
Detecting Collusion in High-Dimensional Oligopoly Models: The

Case of the US Corn Seed Industry

Ryo Sakamoto∗

University of Wisconsin-Madison

December 29, 2023

Abstract

The nature of firm conduct significantly affects market outcomes. Existing research estimating
conduct parameters of a large number of firms suffers from the curse of dimensionality. This paper
develops a novel structural model of demand and supply that allows for the flexible estimation of
the degree of collusion. The proposed framework is empirically tractable even for a large number
of multiproduct firms. I apply my model to the US corn seed industry using a proprietary data
set about farm-level transactions. Despite concerns about the ramifications of the growing market
power of large biotech firms, little is known about whether firms compete or collude in their pricing.
My estimation results show that the five largest firms are all engaged in imperfect collusion, and I
reject benchmark conduct such as price and quantity competition. The low degree of competition
translates into high price-cost margins, which I estimate at approximately 38%-51%. The results
of counterfactual simulations indicate that seed companies extract substantial rent from farmers
through non-competitive pricing, and total welfare loss is measured at $3.65 billion over the period
2008-2014.

1 Introduction

Whether firms compete or collude has significant implications for market outcomes. A lack of com-
petition allows firms to set higher prices that extract excess surplus from consumers. The recent
literature documents a growing prevalence of highly concentrated industries and rising markups (De
Loecker, Eeckhout, and Unger 2020; Döpper et al. 2022). These trends raise concerns about the
impacts of growing market power on total welfare and its distribution between consumers and firms.
However, such high markups are not necessarily caused by anti-competitive conduct such as implicit
collusion because they can be attributed to several other factors, including changes in demand and
cost. Therefore, empirically identifying firm conduct has been the central issue in the field of industrial
organization for obtaining policy-relevant implications in many industries.

Seminal work by Bresnahan (1982) shows that exogenous rotation of demand can be used to
distinguish different oligopoly models with a homogeneous good. Motivated by his finding, many
papers have estimated firm conduct parameters to measure the degree of competition in numerous
markets (Bresnahan 1989). Nevo (1998) shows how to extend such models to accommodate product
differentiation. He argues that it is possible to identify conduct parameters of multiproduct firms
in principle, but it is infeasible due to the requirement of a large number of excluded instruments
for a large number of parameters. This curse of dimensionality problem forces researchers to rely
on arbitrary assumptions about how firms compete with each other, which may lead to misleading
evaluations of market power and policy recommendations.

In this paper, I develop a novel structural model of demand and supply that allows for estimating
the degree of collusion of multiproduct firms in a differentiated products market. A main advantage of
the proposed model is that it is empirically tractable even when we employ a high-dimensional oligopoly
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model in which many firms strategically interact. Importantly, my model retains the flexibility that
allows each firm to operate at any level of competition from collusion to monopolistic competition.

On the supply side of the model, I use an oligopolistic model developed by d’Aspremont, Dos
Santos Ferreira, and Gérard-Varet (2007) to construct an empirical framework to estimate conduct
parameters. In their oligopolistic model, each firm maximizes its own profit given prices and quantities
of other firms under two demand constraints: market share constraint and market size constraint.
The conduct of each firm is measured by a relative attitude toward these two constraints and different
conduct leads to different degrees of collusion. Intuitively, when firms compete aggressively with each
other, they put more weight on the market share constraint and tend to obtain higher market shares
by lowering prices. By contrast, when firms collude with each other, they put more weight on the
market size constraint and tend to sustain higher prices by coordinating and controlling the total
supply of the market. D’Aspremont, Dos Santos Ferreira, and Gérard-Varet (2007) show that this
dichotomous characterization of competition accommodates varying degrees of competition, which nest
the benchmark models such as collusion, monopolistic competition, Nash-Bertrand price, and Cournot
quantity competition. While their analysis is purely theoretical with an assumption of single-product
firms, I incorporate it into an empirical structural model with an extension to multiproduct firms.1

This formulation significantly reduces the dimension of conduct parameters because the degree of
collusion is measured by a firm-specific single parameter. The estimation equations constructed from
firms’ first-order conditions are empirically tractable owing to a reduced number of parameters and
simpler functional forms.2

On the demand side of the model, I use a discrete/continuous logit demand model in which
consumers choose one of the products and then choose a purchase amount under their budget constraint
(Hanemann 1984). Following Björnerstedt and Verboven (2016), I incorporate random coefficients
related to consumer heterogeneity into the discrete/continuous framework. This model generates
flexible substitution patterns such as the standard random coefficients logit model originally proposed
by Berry, Levinsohn, and Pakes (1995). I choose the discrete/continuous demand system because it
allows for recovering utility and expenditure functions of a representative consumer generated from
the population of heterogeneous consumers (Anderson, De Palma, and Thisse 1987; Dubé, Joo, and
Kim 2023). This integrability property ensures a theoretical consistency between the demand and
supply model and enables us to conduct welfare analysis based on the structural model.

In the empirical part of this paper, I apply the proposed model to the US corn seed industry. This
industry has undergone considerable structural change since genetically modified (GM) seeds were
introduced in 1996. The combined shares of the top five seed companies (Monsanto, Dupont, Syn-
genta, Dow AgroSciences, and AgReliant) accounted for over 85% of the market in 2014. This highly
concentrated structure has been shaped by a number of vertical and horizontal mergers. Furthermore,
biotech firms such as Monsanto permit other firms to use patented GM traits through cross-licensing
agreements. This business practice contributes to the expansion of GM traits, but it is sometimes
considered a non-merger cartel because the web of cross-licensing agreements between firms may fa-
cilitate anti-competitive practices (Moschini 2010; Howard 2015). The patented GM technologies and
the consolidation of the seed industry raise concerns about the pricing of GM seeds and its impacts
on welfare (Clancy and Moschini 2017; Deconinck 2020). Surprisingly little, however, is known about
the extent of competition between firms in the seed industry (OECD 2018).

My aim in the empirical application is to estimate conduct parameters for the five largest firms in
the US corn seed market from 2008 to 2014. I use a proprietary data set about farm-level seed choices.
The data include expenditure, purchased quantity, brands, parent companies, and types of genetically
modified traits for each transaction. I also utilize farmer demographic variables such as farm size and

1. Sakamoto and Stiegert (2018) incorporate the oligopolistic model by d’Aspremont, Dos Santos Ferreira, and Gérard-
Varet (2007) into a structural model with the almost ideal demand system by Deaton and Muellbauer (1980), and estimate
conduct parameters of two single-product firms in the US retail coffee industry. The results show that the conduct of
these firms is close to collusion and Nash-Bertrand pricing conduct is rejected.

2. Corts (1999) points out that inference of conduct parameters is invalid if researchers do not formulate “the true
nature of the behavior underlying the observed equilibrium.” This critique does not apply to the model in this paper
because I assume that the observed equilibrium is generated from firms’ static profit-maximization behavior with true
values of conduct parameters. My conduct parameters have structural interpretations conditional on this assumption.
This argument is borrowed from Ciliberto and Williams (2014) and Magnolfi and Sullivan (2022).
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location of production to incorporate preference heterogeneity. I focus on the core region of the Corn
Belt spanning 10 major corn-producing states in the midwestern US, which account for a significant
portion of US corn production and share relatively similar agro-economic conditions.

The results of the demand estimation show that the product-level demand for GM seeds is quite
elastic and that different companies’ seeds are imperfect substitutes for one another. The interaction
parameter of the price coefficient with farm size indicates that larger farmers are more sensitive to
price increases. In contrast, the aggregate demand for GM seeds is inelastic, which might allow firms
to sustain higher prices by coordination. The estimates of willingness to pay for GM traits indicate
that farmers highly value GM seeds with stacked traits of two types of insect resistance (corn borer
and rootworm) and herbicide tolerance.

In the supply side of the empirical analysis, I estimate conduct parameters for each of the five firms
along with marginal cost parameters. Identification of the conduct parameters requires addressing the
endogeneity arising from the fact that firms consider unobserved marginal costs when setting their
markups. The structure of the proposed model significantly reduces the requirement for the number
of excluded instruments. Following Berry and Haile (2014), I use the number of rival firms interacting
with firm dummies as excluded instruments for conduct parameters; the number of rival firms is
expected to shift markups by changing the market environment but to be uncorrelated with marginal
costs of seed production.

The results of the supply-side estimation indicate that the conduct parameters for the five firms
are all precisely estimated. The values of all estimated conduct parameters lie between collusion and
quantity competition, which means that the conduct of these firms is imperfect collusion. The low
degree of competition might reflect coordination between firms, internalization by the licensing firms
(which can earn licensing fees from sales of the licensed firms), or both. The results of hypothesis
testing reject all benchmark conduct, including Nash-Bertrand price competition and Cournot quantity
competition. The low degree of competition leads to higher markups, indicating that the markup of
the largest firm is about 51%, while the markups of the other four firms range from 38% to 41%.

To quantify the impacts of the collusive conduct on market outcomes, I conduct counterfactual
simulations. My results show that, if these firms engaged in price competition, the average price of GM
seeds would have been 29% lower. These lower prices would increase farmer surplus while decreasing
seed firm profits. As a result, total welfare would have been 3.65 billion US dollars higher over the
period from 2008 to 2014. My results indicate that the low degree of competition significantly affects
both total welfare and its distribution between farmers and firms in the seed industry.

This paper contributes to the literature both methodologically and empirically. Methodologically,
my research provides a good alternative to estimate firm conduct in differentiated products markets.
Nevo (1998) suggests the use of selection tests for a menu of benchmark models rather than the
estimation of conduct parameters, due to the severe requirement of excluded instruments. Many
previous studies adopt and refine a testing-based approach in their empirical applications (Rivers
and Vuong 2002; Villas-Boas 2007; Backus, Conlon, and Sinkinson 2021; Duarte et al. 2023). An
advantage of the testing approach is that it is generally less demanding in terms of the number of
excluded instruments. A disadvantage is that it requires researchers to specify a fixed set of oligopoly
models in advance to test against each other. In addition, it becomes cumbersome very quickly when
the number of firms increases. Furthermore, as shown in my estimation results of the corn seed
industry, the true conduct may be in between the benchmark conduct models. My estimation-based
approach for conduct parameters can be applicable in many situations, even when the testing-based
approach has been considered the only option for analyzing the degree of collusion due to a large
number of firms.

Another strand of related papers includes Ciliberto and Williams (2014) and Miller and Weinberg
(2017). They estimate continuous conduct parameters using a structural model of demand and supply,
which is essentially the same approach as in this paper. Miller and Weinberg (2017) measure the
effects of a joint venture between ABI and MillerCoors on the degree of price coordination in the
US beer industry. The focus on the coordination between two firms allows them to estimate only a
single conduct parameter. Ciliberto and Williams (2014) also focus on pair-wise relationships between
airlines; they reduce the number of parameters by assuming a certain relationship between conduct
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and a level of multimarket contact. While their approach provides valuable insights about how to
estimate pair-wise relationships of coordination, it has difficulty in accommodating a large number of
conduct parameters. On the other hand, although my approach cannot identify pair-wise coordination,
it allows for flexible estimation of the degree of coordination of each firm. The degree of coordination
is instead interpreted as the average conduct of each firm toward the whole industry. This approach
is applicable even when researchers have an interest in many oligopolistic firms in an industry.

This paper also contributes to accumulating empirical evidence of the degree of competition in
the US seed industry. The previous research focuses on the demand side of this industry (Ciliberto,
Moschini, and Perry 2019; Luo, Moschini, and Perry 2023). Compared to the demand analyses, the
related empirical evidence about firm conduct is limited, even though many researchers and stake-
holders have raised concerns about the growing concentration in the seed industry. To my knowledge,
Shi, Meloyan, and Kubo (2023) is the only paper that explicitly analyzes the degree of collusion in the
US corn seed industry. They find that firms are implicitly colluding in both product lines and pricing,
with a focus on three major players. This paper estimates the conduct of the five largest firms in their
pricing and analyzes its welfare implications, which provides new policy-relevant empirical evidence,
especially on the overall competitiveness in the seed industry.

The rest of the paper is organized as follows. The next section presents the background of the
US corn seed industry. Section 3 presents a structural model of demand and supply. The data and
identification strategy are discussed in section 4. Section 5 presents the estimation results. Section 6
concludes.

2 Background: The US Corn Seed Industry

Rapid advancement of modern biotechnology has contributed to the strong growth of agricultural
productivity, especially through the development of genetically modified (GM) seeds. Recombinant
DNA techniques make it possible to insert useful foreign genes into the corn germplasm, conferring
valuable traits. Primary GM traits for corn seeds include herbicide tolerance and insect resistance.
The herbicide tolerance trait makes corn resistant to certain herbicides such as glyphosate. The insect
resistance trait makes corn resistant to certain insects such as corn borer and rootworm. Farmers
highly value these GM traits because they offer an effective tool for weed and insect control, which
results in reduced variance of yield and lower production costs (Fernandez-Cornejo 2004; Moschini
2008). Figures 1 and 2 show the adoption rate and the average price of GM corn seeds from 1996 to
2014 in the United States. Farmers adopted GM corn seeds rapidly, with over 90% of seeds having GM
traits by 2014. The figures also show that, in the early stage of diffusion, most GM seeds possessed a
single trait of either herbicide tolerance or insect resistance, but seeds with stacked traits became more
prevalent over time. The adoption rate of seeds with stacked traits was higher than 80% by 2014, and
the adoption rate of triple-stacked traits increased to 55% of the total acreage. In tandem, the average
prices have increased over the years and farmers have paid the highest prices for the triple-stacked
GM seeds.

The US seed industry has become more consolidated since the large-scale commercial introduction
of GM seeds. One important aspect of GM technologies is that GM traits need to be inserted into
elite germplasm through breeding processes. GM traits are developed and owned by a few large firms
such as Monsanto and Syngenta, while the elite germplasm is owned by many local and regional
seed companies. This complementary property between GM traits and elite germplasm has spurred a
number of horizontal and vertical mergers (Graff, Rausser, and Small 2003; Fernandez-Cornejo 2004).
For example, when Monsanto originally developed one of its patented GM traits (Roundup Ready), it
did not have its own seed subsidiary. A lack of direct access to the elite germplasm and distribution
channels to farmers motivated Monsanto to pursue a series of acquisitions of seed companies, including
the acquisition of Dekalb in 1998. At the same time, other large biotech firms made similar strategic
moves. In 1999, Dupont acquired Pioneer, which was the dominant seed company at that time.
Syngenta formed in 2000 as a result of the restructuring of the life science companies Novartis and
AstraZeneca. Dow AgroSciences formed as Dow Chemical’s subsidiary in 1997 and acquired Mycogen
in 1998. AgReliant formed as a joint venture of European-based companies KWS and Limagrain in
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Figure 1: Adoption rate of GM corn seeds (in
% of total corn acreage) in the US
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Figure 2: The average price of GM corn seeds
(in $ per bag) in the US

Note: In Figure 1, the adoption rate is the corn acreage of each GM trait divided by the total corn acreage. In
Figure 2, the average price is measured in dollars per bag. “Single trait” refers to products with only one GM
trait (corn borer resistance, rootworm resistance, or herbicide tolerance). “Double-Stacked” refers to products
with two GM traits and “Triple-Stacked” refers to products with three GM traits. Source: GfK Kynetec data.

2000. Even after the establishment of the five large firms, these firms continued to acquire regional
seed companies in the subsequent years.

Figure 3 shows the market shares of GM seed companies from 2004 to 2014. The figure shows
that the total market share of the five firms (Monsanto, Dupont, Syngenta, Dow AgroSciences, and
AgReliant) increased from 65% in 2004 to 87% in 2014. By contrast, the market share of other local
and regional seed companies accounted for about 35% in 2004, but decreased to less than 14% in
2014. Monsanto and Dupont are the two dominant firms that control around 70% of the market. The
other three firms (Syngenta, Dow AgroSciences, and AgReliant) have relatively smaller shares but
have maintained a significant presence. The Herfindahl-Hirshman Indexes (HHIs) exceed 2, 500 after
2011, which means that the market is highly concentrated based on the horizontal merger guidelines
issued by the US Department of Justice and Federal Trade Commission. The market shares of these
five firms are relatively stable after 2008.

The business practice of cross-licensing agreements raises another concern of reduced competition.
GM traits are developed and owned by six big biotech firms (Monsanto, Syngenta, Dupont, Dow,
Bayer, and BASF). As Figure 4 shows, these firms sign cross-licensing agreements among themselves,
allowing them to produce GM seeds with genes from other firms. Although the licensing agreement
can facilitate competition through widespread utilization of proprietary technologies, they can also
function as non-merger cartels (Howard 2009, 2015). Other local and regional seed firms have to
sign licensing contracts with biotech firms to insert GM traits in their seed products. In particular,
Monsanto aggressively licenses its patented GM traits, such as Roundup Ready and YieldGard, to
other seed companies. As a result, the market share of products that incorporate Monsanto’s patented
traits was approximately 85% in 2014, based on a calculation from GfK Kynetec data. The terms
of licensing agreements are confidential, but licensees are supposed to pay certain licensing fees to
licensors (Moschini 2010). This suggests that licensing agreements might give the licensors additional
incentives to increase their prices through internalization of other firms’ profits because they can earn
additional profits from the sales of other firms.

In recent years, this already highly concentrated industry has seen further waves of large M&A; the
merger of Dow and DuPont in 2017, the acquisition of Syngenta by ChemChina in 2017, and the merger
of Bayer and Monsanto in 2018. These mergers are seen to reinforce corporate power as they combine
firms with a strong position in the agrochemical market (Bayer, Dow, ChemChina) with firms in a
strong position in the seed and biotechnology industry (Monsanto, DuPont, and Syngenta) (OECD
2018). Antitrust agencies extensively scrutinize the potential impacts of these mergers on market
outcomes and approve them under certain conditions, such as divestiture of assets. For instance,
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Figure 3: Market shares and HHI
Note: Market shares are measured by value for Monsanto, Dupont, Syngenta, Dow AgroSciences, and
AgReliant. “Others” refers to the total market shares of the other firms. The Herfindahl-Hirshman

Indexes (HHIs) are scaled from 0 to 10, 000 on right axis. Source: GfK Kynetec data.

Bayer was required to divest most of its seed business, including the GM traits named Liberty Link,
and all of these assets were sold to BASF, which is a competitor to Bayer.

The growing concentration of the seed industry heightens concerns about its impacts on the pricing
of GM seeds, its contribution to welfare, and incentives for innovation (Clancy and Moschini 2017).
However, little empirical information has been available (OECD 2018).

3 Structural model of demand and supply

Several potential factors explain the observed price patterns. Higher prices may be due to inelastic
demand, higher marginal costs, or a high degree of collusion. A structural model makes it possible
to separately identify these sources (Berry and Haile 2014). I develop a novel structural model that
allows for flexible estimation of the degree of collusion for a large number of multiproduct firms in an
empirically tractable way.

3.1 Demand model

On the demand side, I use a variant of a random coefficient logit model. The demand model is
theoretically the same as a discrete/continuous demand model proposed by Hanemann (1984). In
this model, a consumer first chooses one of the products and then decides how much to purchase
under his/her budget constraint. The discrete/continuous demand specification allows for recovering
utility and expenditure functions of a representative consumer corresponding to the population of
heterogeneous consumers. This integrability property ensures the existence of price and quantity
aggregators and makes it possible to conduct welfare analyses in a theoretically consistent way.

There are Irt farmers in region r and period t. In each market, there are Jrt products. I consider
farmers to be utility-maximizing individuals who choose the alternative with the highest utility.3

3. The previous studies take the same approach. For instance, using a discrete choice model, Qaim and De Janvry
(2003) model farmers’ choices of genetically modified cotton using the utility maximization framework. See also Hubbell,
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Figure 4: Cross-licensing agreements between big six biotech firms for GM traits
Source: Howard (2015)

Farmer i chooses one of the GM seed products (j = 1, ..., Jrt) or the conventional seed as an outside
option. This specification means that it is a conditional demand model in which only corn seed choices
are considered.4

The conditional indirect utility function of farmer i given he/she chooses product j is:

uijrt = x′jβi + αi(ln yirt − ln pjrt) + φb + φr + φt + ξjrt + εijrt (1)

where xj is a vector of observed product characteristics, yirt is the corn seed expenditure of farmer
i, and pjrt is the price. The terms φb, φr, φt represent multiple fixed effects; φb allows for the mean
valuation of the unobserved product characteristic to vary freely by brand (Dekalb, Pioneer, etc.);
φr and φt allow the mean valuation of the utility from choosing the inside products to vary freely
by region and time, respectively. I control for φb, φr, and φt using brand, region, and time dummy
variables, respectively. The term ξjrt represents an unobserved quality variation specific to region r
and period t, and εijrt is a structural error term. I normalize the mean utility of the conventional seed
(j = 0) to zero.

The observable product characteristics include indicator variables for GM traits (GT, CB RW,
CB GT, RW GT, CB RW GT), where GT, CB, and RW stand for glyphosate tolerance, corn borer
resistance, and rootworm resistance, respectively. Each of the indicator variables takes the value 1 if
the product contains the corresponding trait. For instance, in the case of a product with a single trait
of GT, only the indicator variable for GT takes the value 1. For products with a double-stacked trait of
glyphosate tolerance and corn borer, both indicator variables for GT and CB GT take the value 1. If
products have a triple-stacked trait of CB, RW, and GT, indicator variables for GT and CB RW GT
take the value 1. I do not include an indicator variable for a single trait of CB because there is a

Marra, and Carlson (2000) and Breustedt, Müller-Scheeßel, and Latacz-Lohmann (2008).
4. Although it is common to specify an outside option as a non-purchase choice in discrete demand models, some papers

such as Train and Winston (2007) and Sheu (2014) estimate conditional demand models without a non-purchase option.
One advantage of conditional demand is that it is not necessary to speculate a total market size, which often requires
strong assumptions. Train and Winston (2007) discuss this issue in detail. In the case of seed demand estimation, Luo,
Moschini, and Perry (2023) estimate a conditional demand model that considers choices only between soybean seeds.
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linearly dependent relationship between the indicator variables of GM traits (see the discussion in Shi,
Chavas, and Stiegert 2010).5 With this specification, the values of the parameters for each GM trait
are measured as a difference from the valuation of CB.

I include random coefficients associated with farmer demographic variables to allow for flexible
substitution patterns following the standard procedure used in the previous research since Berry,
Levinsohn, and Pakes (1995). I specify the farmer-specific coefficients as [αi,β

′
i] = [α,β′] + ΠDirt,

where Dirt is a vector of farmer i’s demographic variables and Π is the corresponding parameter
matrix. I allow the price-sensitive coefficient α to vary by farm size, which is measured by planted
corn acreage. I also allow the valuation of GM traits β to vary by geographic location, which is
measured by longitude and latitude of the center of the county where farmers produce corn. These
location variables are expected to capture regional differences in soil and climate that affect farmers’
willingness to pay for GM traits.

Assuming farmer i chooses a product that maximizes the utility uijrt, and assuming the error term
εijrt follows the extreme value distribution, the probability that farmer i chooses product j is derived:

sijrt(δrt,Π) =
exp(δjrt + νijrt(Π))

1 +
∑Jrt

k=1 exp(δkrt + νikrt(Π))

where δjrt is the mean utility of product j and νijrt(Π) is the random part of farmer-specific valuations
defined by:

δjrt = x′jβ − α ln pjrt + φb + φr + φt + ξjrt

νijrt(Π) = (x′j , ln pjrt) ∗ΠDirt

To derive the demand for product j, I apply Roy’s identity to the indirect utility function (1),
which gives dijrt = yirt/pjrt. This is the conditional demand given that farmer i chooses product j.
Then, the expected demand for product j by farmer i is:

qijrt(prt, yirt) = Eε[qijrt|prt] = sijrt(δrt,Π)
yirt
pjrt

This expected demand indicates that farmer i chooses one of the products and purchases multiple
units of the chosen product.6

Aggregating the expected demand for product j over all farmers (i = 1, ..., Irt), the market demand
for product j in region r and period t is derived:

qjrt(prt, Yrt) = sjrt(δrt,Π)
Yrt
pjrt

(2)

sjrt(δrt,Π) =

Irt∑
i=1

wirt
exp(δjrt + νijrt(Π))

1 +
∑Jrt

k=1 exp(δkrt + νikrt(Π))
(3)

f where Yrt is the aggregate expenditure, defined by Yrt = Irt
∑

iwirtyirt. wirt is the share of farmers
who have demographic variable Dirt in the population of region r and period t.

The market share equation in (3) takes the familiar form of the standard random coefficient
logit proposed by Berry, Levinsohn, and Pakes (1995). One notable difference is that here the price
term enters logarithmically (−α ln pjt), while it enters linearly (−αpjt) in the standard logit. Due to
this specification, the market share is measured by value, not by quantity as it is determined from
equation (2). Björnerstedt and Verboven (2016) discuss that this type of discrete choice model is a
straightforward variant of BLP’s demand specification and the same estimation technique including
contraction mapping can be applied.

To estimate demand-side parameters [α,β,Π], I use a GMM estimator and define its objective
function by:

5. Also, I do not include an indicator variable for RW because I omit the products with the single trait of RW due to
very few observations in my sample.

6. Dubé (2019) points out that the observed consumer behavior is consistent with multiple purchases in many indus-
tries.
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JD(α,β,Π) =

 1

N

∑
j,r,t

ξjrtZ
D
jrt

′WD

 1

N

∑
j,r,t

ξjrtZ
D
jrt


where N is the number of observations, ZDjrt is a set of instruments that satisfy moment conditions

E[ξjrtZ
D
jrt] = 0, and WD is a GMM weighting matrix.

3.2 Supply models in the previous research

My main innovation is related to the introduction of a new supply framework that allows for estimation
of conduct parameters and maintains empirical tractability even when the number of firms increases.
To highlight the advantages of my proposed model, I first demonstrate how to estimate firm conduct
in the existing models and then discuss what is the difficulty in implementing such models.

In the supply side of structural models, the standard practice is to estimate marginal cost equations
together with markup equations derived from solving first-order conditions of the profit maximization
problem (Berry, Levinsohn, and Pakes 1995). I start from the standard Bertrand price competition
model.

There are F firms. Firm f produces a subset, Ωf , of the j = 1, ..., J differentiated products. Here,
I suppress the subscript of region r and period t for notational simplicity. The profit maximization
problem of firm f is:

max
pf

∑
j∈Ωf

(pj − cj)qj(pf ,p−f , Y )− FCf

where pf is a vector of prices of products produced by firm f ; p−f is a vector of prices of products
produced by the other firms; cj is the marginal cost of product j; FCf is the fixed cost of firm f ; and
qj is the demand function obtained in equation (2).

Deriving the first-order conditions and stacking them in vector form, we have:

p− c = −

[(
∂q(p, Y )

∂p

)T]−1

q(p, Y )

where p, c, and q are J by 1 vectors of prices, marginal costs, and quantities of all products, respec-
tively. ∂q/∂p is a J by J Jacobian matrix of the demand function. Subscript T denotes the transpose
of the matrix.

This is a vector of the equilibrium markups under Nash-Bertrand price competition. Because only
demand-side parameters need to be estimated, many papers rely on the assumption of this benchmark
conduct to estimate markups (Nevo 2000; Hausman and Leonard 2007; Goeree 2008; Nakamura and
Zerom 2010).

Nevo (1998) shows how to introduce conduct parameters concerning competition between multi-
product firms. The marginal cost is specified as a linear function, c = γω + ε, where γ is a marginal
cost parameter, ω is a vector of observed cost shifters, and ζ is a vector of unobserved cost shifters.
Substituting this marginal cost function in the first-order conditions and introducing a matrix of
conduct parameters, we have:

p = γω −

[
Θ ∗

(
∂q(p, Y )

∂p

)T]−1

q(p, Y ) + ζ (4)

where ∗ denotes element-wise multiplication, and Θ is a J by J matrix of conduct parameters defined
by:
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Θ =


θ11 θ12 · · · θ1J

θ21
. . . · · · θ2J

...
...

. . .
...

θJ1 θJ2 · · · θJJ


The matrix Θ measures the degree of internalization for a pair of products when firms solve their

profit maximization problems. For instance, consider a situation where firm f produces product j and
firm g produces product k. If θjk takes a positive value, it indicates that firm f internalizes a profit of
product k when it chooses a price of product j. Within this framework, different models of competition
can be nested depending on values of Θ; a single-product Nash-Bertrand pricing model corresponds
to an identity matrix, a multiproduct Nash-Bertrand pricing model corresponds to a block diagonal
matrix, and a collusive model corresponds to a matrix of one. Therefore, this formulation allows for
flexible estimation of firm conduct.

Nevo (1998) also argues that a downside of this formulation is that there are J2 numbers of conduct
parameters and thus it requires the same number of excluded instruments because the markups are
necessarily correlated with unobserved marginal costs through firms’ price decisions. Since finding such
a large number of instruments is hard in practice, he suggests using testing-based approaches for a
menu of pre-specified models, which is less demanding in terms of the number of excluded instruments
(Backus, Conlon, and Sinkinson 2021; Magnolfi and Sullivan 2022; Duarte et al. 2023).

Several papers estimate conduct parameters by imposing additional assumptions on a matrix of Θ
to reduce the dimension of the parameters, including Sudhir (2001), Ciliberto and Williams (2014),
Miller and Weinberg (2017), and Michel, Manuel Paz y Mino, and Weiergraeber (2023).

First, these papers focus on firm-level conduct rather than product-level conduct by specifying the
same values of parameters for all products produced by the same firm. This decreases the number
of conduct parameters from J2 to F 2. Second, they reduce the number of firms that are subject to
estimation. For instance, Sudhir (2001) focuses on competition between two stores (firms), which
makes the number of parameters 4 (= 2 × 2). Kadiyali, Sudhir, and Rao (2001) point out that, in
many studies, the focus has been on the largest two or three firms in an industry. Third, most of the
papers set diagonal elements of the parameter matrix to one (Ciliberto and Williams 2014; Miller and
Weinberg 2017; Michel, Manuel Paz y Mino, and Weiergraeber 2023). In this formulation, conduct
parameters measure deviation from the benchmark Bertrand pricing. This reduces the number of
parameters from F 2 to F (F − 1).

In addition to these assumptions, Miller and Weinberg (2017) further assume symmetric coordi-
nation between a subset of firms. Specifically, their matrix of conduct parameters Θ for four firms
(Anheuser-Busch InBev (ABI), MillerCoors, Modelo, and Heineken) in the beer industry is specified
as follows:

ΘMiller =


1 θ 0 0
θ 1 0 0
0 0 1 0
0 0 0 1


As you can see from the matrix, they assume symmetric coordination between ABI and MillerCoors

and no coordination for any other combinations of the firms. This specification is based on their
interest in the effects of the merger between Miller and Coors on the coordination between ABI and
MillerCoors. The number of conduct parameters is reduced to 1.

The other papers also reduce the number of conduct parameters to 1 or 2. Michel, Manuel Paz y
Mino, and Weiergraeber (2023) estimate conduct parameters of firms in the US cereal industry using
two specifications. In the first specification, all conduct parameters take the same value, resulting
in a single conduct parameter. In the second specification, they assume group-specific conduct for
two groups: the largest two firms (Kellogg’s and General Mills) and the other firms.7 Ciliberto and

7. Michel, Manuel Paz y Mino, and Weiergraeber (2023) add further flexibility to estimate separate parameters for
three periods: pre-merger, post-merger, and price war period. Their main objective is to propose new instruments using
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Williams (2014) take another approach, which specifies conduct parameters as functions of exogenous
variables of multi-market contact between a pair of firms in the US airline industry. Under this
functional assumption, the number of conduct parameters is reduced to 2 in their application. This
approach is useful when it is possible to find exogenous variables that directly determine the conduct
of firms in industries.

I then discuss how to apply this framework to the US corn seed industry. There are five major
players (Monsanto, Dupont, Syngenta, Dow AgroSciencies, and AgReliant). To estimate the conduct
of the five firms, possible specifications of a matrix of Θ are:

Θ1 =


1 θ12 θ13 θ14 θ15

θ21 1 θ23 θ24 θ25

θ31 θ32 1 θ34 θ35

θ41 θ42 θ43 1 θ45

θ51 θ52 θ53 θ54 1

 ,Θ2 =


1 θ12 θ13 θ14 θ15

θ12 1 θ23 θ24 θ25

θ13 θ23 1 θ34 θ35

θ14 θ24 θ34 1 θ45

θ15 θ25 θ35 θ45 1

 ,Θ3 =


1 θ1 θ1 θ1 θ1

θ2 1 θ2 θ2 θ2

θ3 θ3 1 θ3 θ3

θ4 θ4 θ4 1 θ4

θ5 θ5 θ5 θ5 1

 (5)

The first specification Θ1 is the most flexible, in which any pair of firms can interact asymmetrically.
The number of parameters is 20. The second specification Θ2 assumes symmetry of interactions
between firms. The number of parameters is reduced to 10. The third specification Θ3 assumes that
each firm internalizes the profits of other firms by the same degree, resulting in the five conduct
parameters. All of these specifications can provide valuable insights about firm conduct, but finding
five or more excluded instruments is difficult in practice.

Furthermore, deriving estimation equations involves an inversion of a matrix of conduct parameters,
which makes the markup term a complicated function of derivatives of demand functions and conduct
parameters. To highlight this issue, I illustrate a simpler case in which there are three single-product
firms. With the same assumption of the third specification Θ3, estimation equations are derived as:

p1 = ω′1γ −
(q22q33 − θ2θ3q23q32)q1 + (θ1θ3q13q32 − θ1q12q33)q2 + (θ1θ2q12q23 − θ1q13q22)q3

D
+ ζ1rt

p2 = ω′2γ −
(θ2θ3q23q31 − θ2q21q33)q1 + (q11q33 − θ1θ3q13q31)q2 + (θ1θ2q13q21 − θ2q11q23)q3

D
+ ζ2rt

p3 = ω′3γ −
(θ2θ3q21q32 − θ3q22q31)q1 + (θ1θ3q12q31 − θ3q11q32)q2 + (q11q22 − θ1θ2q12q21)q3

D
+ ζ3rt

(6)

where djk =
∂qj
∂pk

and D is a denominator of the inverse matrix in equation (4) given by:

D = q11q22q33 + θ1θ2θ3q12q23q31 + θ1θ2θ3q13q21q32 − θ1θ3q13q22q31 − θ2θ3q11q23q32 − θ1θ2q12q33q21

These estimation equations have highly nonlinear markup terms. They are already intractable
even when the number of firms is three, and it becomes more complicated when the number of firms
increases. In the end, it is impractically difficult to estimate conduct parameters for five firms in
the existing framework. This motivates me to introduce a new supply framework that provides more
tractable equations.

3.3 Proposed supply model

In the supply side of my structural model, I formulate firms’ profit maximization problems based on
the oligopolistic model developed by d’Aspremont, Dos Santos Ferreira, and Gérard-Varet (2007). In
this model, competition between firms is modeled by two dimensions: competition for market share
and competition for market size. Oligopolistic firms compete with each other to obtain higher market
shares by lowering prices. On the other hand, they have a common interest in coordinating a total
market supply to sustain higher prices, which can be viewed as competition against firms or products
that are outside the market. The relative attitude on these two kinds of competition determines the

promotion data, which can be constructed from the standard data set.
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degree of competition of each firm. d’Aspremont, Dos Santos Ferreira, and Gérard-Varet (2007) show
that different degrees of competition, from monopolistic competition to collusion, can be realized as
an oligopolistic equilibrium in their theoretical analyses.

I show how to incorporate this model into an empirical structural model with a discrete/continuous
logit demand. This formulation significantly reduces the number of dimensions of interactions between
firms while maintaining flexibility for the degree of competition because a single conduct parame-
ter per firm characterizes optimal markups. To construct the model, I extend theoretical model of
d’Aspremont, Dos Santos Ferreira, and Gérard-Varet (2007) to allow for multiproduct firms because
their assumption of single-product firms is restrictive in many applications. In the meantime, I sup-
press the subscript of region r and period t for notational simplicity.

There are F firms. Firm f produces a subset, Ωf , of the j = 1, ..., J differentiated products.
Following d’Aspremont, Dos Santos Ferreira, and Gérard-Varet (2007), firm f maximizes its profit
given other firms’ choices under two demand constraints. A profit maximization problem of firm f is
formulated as:

max
pf ,qf

∑
j∈Ωf

(pj − cj)qj − FCf

subject to Qf (qf ) ≤ Hf (pf ,p−f , Q(qf , q−f ))

and Q(qf , q−f ) ≤ D(pf ,p−f , Y )

(7)

where pj is the price of product j, cj is the marginal cost, qj is the quantity, FCf is the fixed cost of
firm f . pf is a vector of prices produced by firm f , and qf is a vector of the corresponding quantities.
p−f and q−f are vectors of prices and quantities of all other products produced by the other firms.
Qf (qf ) is the quantity aggregator of firm f ’s products and Hf is its Hicksian demand function.
Q(q) is the quantity aggregator of all inside products and D is its Marshallian demand function. Y
is the total expenditure on seeds (GM and conventional seeds). The integrability property of the
discrete/continuous demand ensures the existence of these quantity aggregators (see Appendix A.1 for
further details.).

The first constraint is called the market share constraint, which governs firm f ’s choices of prices
and quantities in terms of the firm-level demand (market share) within the inside products (GM seeds).
The Hicksian demand functionHf considers substitution between the inside products conditional onQ.
To make the framework compatible with multiproduct firms, I construct the market share constraint
using a firm-level demand function rather than a product-level demand to allow for internalization of
profits for their own products.8

The second constraint is called the market size constraint, which governs firm f ’s choices of prices
and quantities in terms of the aggregate demand for all inside products (GM seeds). The Marshallian
demand function D considers substitution between the inside products and the outside product. When
the prices of the inside products increase, consumers increase the amount purchased of the outside
product. While the constraint on market share captures the conflictual side of competition between
the firms, the constraint on market size captures their common interest as a sector.

In models of oligopolistic competition with differentiated products, profit-maximizing firms charge
positive markups depending on perceived demand elasticities. For instance, a single-product firm
sets a higher markup as the demand becomes more inelastic.9 In this sense, the demand elasticities
summarize necessary information for profit maximization. The same argument applies to the profit
maximization problem given in (7), but perceived elasticities need to be formulated to be consistent
with the market share and size constraints. By totally differentiating the two constraints respectively,
I derive the following elasticities.

8. When firm f is a single-product firm, the market share constraint is qf ≤ Hf (pf , p−f , Q(qf .q−f )), which is the
same as one used in d’Aspremont, Dos Santos Ferreira, and Gérard-Varet (2007).

9. In the case of a single-product firm and price competition, an optimal markup is determined by a so-called inverse
elasticity rule, that is µ = 1/(

∂ ln qj
∂ ln pj

). See, for instance, Tirole (1988).
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ηj ≡ −
d ln qj
d ln pj

∣∣∣
Qf (qf )=Hf (p,Q(q))

= −

∂ lnHf

∂ ln pj
∂ lnQf
∂ ln qj

− ∂ lnQ

∂ ln qj

for j ∈ Ωf

σj ≡ −
d ln qj
d ln pj

∣∣∣
Q(q)=D(p,Y )

= −

∂ lnD

∂ ln pj
∂ lnQ

∂ ln qj

for j ∈ Ωf

With the discrete/continuous demand specification, these elasticities of substitutions are given by:

ηj =
1

Sf |in(sj|f − sj|in)

I∑
i=1

αisij|in(1− Sif |in) + 1 for j ∈ Ωf (8)

σj =
1

(1− s0)sj|in

I∑
i=1

αisijsi0 + 1 for j ∈ Ωf (9)

(see Appendix A.2 for details on derivations.)
The elasticity ηj is called the intra-sectoral elasticity of substitution. As it is calculated as a cur-

vature of the market share constraint, this measures substitutability of product j within the inside
products (GM seeds). On the other hand, the elasticity σj is called the intra-sectoral elasticity of sub-
stitution. It is calculated as a curvature of the market size constraint, so this measures substitutability
of product j against the outside product (non-GM seed). In many applications, the intra-sectoral
elasticity is expected to be greater than the inter-sectoral elasticity, because inside products are more
substitutable for each other compared to an outside product; that is, we expect ηj > σj .

10

To solve the maximization problem for firm f , I derive the Lagrangian as:

Lf =
∑
j∈Ωf

(pj − cj)qj − FCf + λf

(
1−

Qf (qf )

Hf (pf ,p−f , Q(qf , q−f ))

)
+ vf

(
1−

Q(qf , q−f )

D(pf ,p−f , Y )

)
where λf and vf are the Lagrange multipliers for the market share and size constraint, respectively.

Solving the first-order conditions of the profit maximization problem for firm f , we have the
following equilibrium markup of product j supplied by firm f .
(see Appendix A.3 for details on derivations.)

µ∗j =
pj − cj
pj

=
θf (1− Sf |in) + (1− θf )Sf |in

θf (1− Sf |in)ηj + (1− θf )Sf |inσj
for j ∈ Ωf (10)

where Sf |in is the conditional market share of firm f ’s products within the inside products (subscript
in denotes the inside products hereafter). That is, Sf |in =

∑
j∈Ωf

sj|in, where sj|in is the conditional
market share of product j produced by firm f . θf is the conduct parameter that measures the
degree of collusion of firm f . This parameter is defined as the ratio of two Lagrange multipliers,
θf = λf/(λf + vf ), so it is interpreted as the relative attitude toward market share constraint and
market size constraint.

Equation (10) indicates that the optimal markup is determined by the firm market share, two
elasticities of substitution, and the conduct parameter. To further understand the relationship between
these factors, I rewrite the equilibrium markup equation as a weighted harmonic mean of the two
elasticities of substitution.

µ∗j =
1

(1− wf )ηj + wfσj
(11)

10. These elasticities correspond to elasticities of substitution defined in d’Aspremont, Dos Santos Ferreira, and Gérard-
Varet (2007) when a firm produces a single product.
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where the weight wf is given by:

wf =
(1− θf )Sf |in

θf (1− Sf |in) + (1− θf )Sf |in
(12)

From equation (11), the markup µj increases as the weight wf increases when ηj > σj . From
equation (12), the weight wf is an increasing function of the firm share Sf |in and is a decreasing
function of the conduct parameter θf . Thus, the markup is higher for higher market shares and lower
values of the conduct parameter, ceteris paribus. For instance, if Sf |in = 1, which is a monopoly case,
the weight is equal to zero and the markup is 1/σj . Also, if θf = 0, the markup attains the same level
as the monopoly case even though Sf |in < 1. It turns out that the specific values of θf correspond to
the benchmark conduct as follows:

µ∗j =



1
σj

if θf = 0 (Collusion),
1−Sf |in
ηj

+
Sf |in
σj

if θf = 1
1+ηj/σj

(Cournot quantity competition),
1

(1−Sf |in)ηj+Sf |inσj
if θf = 1/2 (Bertrand price competition),

1
ηj

if θf = 1 (Monopolistic competition).

(see Appendix B for details on derivations.)
To illustrate the model, I present a simple example in which two firms each produce two products.

I set ηj = 6 and σj = 2 for two elasticities of substitution. The market share of each product is set to
sj = 0.2 for j = 1, ..., 4, so Sf |in = 0.5(= (0.2 × 2)/(0.2 × 4)) for f = 1, 2. Prices of all products and
total expenditure are set to 1. These values are consistent with the simple discrete/continuous logit.
Then, I calculate markups by using equation (10) for values of θf from 0 to 1.

Figure 5 shows the results of the calculations. The markup increases as θf decreases from 1 to
0. The highest value of the markup is attained when θf = 0 (=collusion), while the lowest value is
attained when θf = 1 (=monopolistic competition). The markups under quantity competition and
price competition are between these two extremes and the markup under quantity competition is
larger than price competition (see Appendix C for further details.).
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0 10.5
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Markup

Price competition
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Monopolistic 
competition

0.25
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Figure 5: Relationship between markup (µj = (pj − cj)/pj) and conduct parameter (θf )
Note: Author’s computations. I set ηj = 6, σj = 2, Sf |1 = 0.5 and calculate the equilibrium markups for values

of conduct parameters from 0 to 1. See Appendix C for further details.

As a final step for deriving estimation equations, I assume that the marginal cost of product j in
region r and period t is linear in both parameters and in the observed cost shifters.

cjrt = ω′jrtγ + φr + ζjrt
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where ωjrt is a vector of observed cost shifters of product j and γ is a vector of parameters. The
observed cost shifters include the previous year’s future corn price and dummy variables about licensing
on GM traits. φr is the region fixed effects that are expected to absorb region-specific costs such as
distributional and marketing costs. ζjrt is an unobserved cost shifter left as a structural error.

Substituting this marginal cost equation into the equilibrium markup equation (10), we have the
following estimation equations.

ζjrt = pjrt

(
1−

θf (1− Sfrt|in) + (1− θf )Sfrt|in

θf (1− Sfrt|in)ηjrt + (1− θf )Sfrt|inσjrt

)
− ω′jrtγ for j ∈ Ωf f = 1, ..., F (13)

To estimate supply-side parameters [γ,θ], I construct an objective function for a GMM estimator
as:

JS(γ,θ) =

 1

N

∑
j,r,t

ζjrtZ
S
jrt

′WS

 1

N

∑
j,r,t

ζjrtZ
S
jrt


where N is the number of observations, ZSjrt is a set of instruments that satisfy moment conditions

E[ζjrtZ
S
jrt] = 0, and WS is a GMM weighting matrix.

In equation (13), the estimated parameters are marginal cost parameters (γ) and firm conduct
parameters Θ = (θ1, ..., θF ). The markup term is endogenous in the sense that it is necessarily corre-
lated with the unobserved costs. This correlation arises from the fact that firms consider unobserved
marginal costs when setting their prices and the markups are functions of the prices of all products
in the market. This endogeneity requires excluded instruments for Θ = (θ1, ..., θF ).

3.4 Comparison of the proposed model with the previous approach

Here, I discuss advantages and disadvantages of the proposed model compared with the previous
approach.

First, the proposed model maintains its tractability even for a large number of firms. From equation
(13), the markup term takes a much simpler functional form; more importantly, it is determined by
only one conduct parameter θf . This structure ensures that the estimation equations do not lose
tractability even for a large number of firms. Furthermore, a single excluded instrument can be
enough to estimate all conduct parameters Θ = (θ1, ..., θF ) if the data exhibits within-firm variations.
In the following application, I interact one instrument with firm-dummy variables to estimate five
conduct parameters. This is in contrast with the existing model, in which – in principle – it requires
the same number of instruments as the number of conduct parameters in more complicated estimation
equations.

Second, the proposed model does not restrict the degree of collusion. Each value of the conduct
parameters determines the degree of collusion of each firm, which can be at any level from monopolistic
competition to collusion. For instance, some firms may be engaged in imperfect collusion while others
are engaged in price competition. Therefore, the model can generate a rich set of equilibrium markups
depending on firm-specific conduct parameters.

A disadvantage of the proposed model is that it cannot estimate the degree of coordination of a pair
of firms. The existing model allows for such an estimation, but only when the number of parameters
is small enough. Table 1 summarizes the number of conduct parameters in both approaches. In the
existing model, the number of parameters increases more than the number of firms for asymmetric
specifications (labeled (a) in the table) and symmetric specifications (b). Thus, the estimation becomes
infeasible very quickly as the number of firms increases. On the other hand, firm-specific specifications
(c) have the same number of parameters in the existing model and the proposed model. However, the
tractability is much higher for the proposed model due to the structure of the estimation equations.
Therefore, while the existing model is suitable when researchers have an interest in the conduct of a
small subset of firms, the proposed model serves to estimate firm-specific conduct for many firms.
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Table 1: The number of conduct parameters

Number of conduct parameters
Number of firms Existing model based on Nevo (1998) Proposed model

(a) asymmetric (b) symmetric (c) firm-specific

1 1 1 1 1
2 2 1 2 2
3 6 3 3 3
4 12 6 4 4
5 20 10 5 5
...

...
...

...
...

n n(n− 1)
n(n− 1)

2
n n

Note: In the existing model, column (a) refers to a model in which asymmetric coordination is
allowed for any pair of firms, column (b) refers to a model that assumes symmetry of a matrix
of conduct parameters, and column (c) refers to a model that assumes firm-specific conduct
parameters. See specifications given in equation (5). The proposed model refers to the model
developed in this paper.

4 Data and Identification

In this section, I present the data and identification strategy for the application of the proposed
structural model to the US corn seed industry.

4.1 Data Sources

My primary data source is the corn TraitTrak data set, collected by GfK Kynetec, a major market
research organization that specializes in agriculture-related industries. This data set is constructed
from a stratified sample of US corn growers surveyed annually from 1995 to 2014. In the data set,
expenditure, quantity, brands, parent companies, and types of genetically modified traits are recorded
for individual transactions between seed firms and farmers. The data is supposed to represent each
crop reporting district (CRD) of the US Department of Agriculture. There are 407,801 observations
in 254 CRDs from 47 states over 1995-2014. Every year there are about 5,000 farmers on average in
the sample and 25% of them are kept in the subsequent year.

I focus on the core region of the Corn Belt in the midwestern US. The market share of the Corn
Belt accounts for approximately 85% of the total corn seed market and the share of the core region
accounts for roughly half of the Corn Belt. My definition of the core region includes 25 CRDs in six
states: Illinois, Indiana, Iowa, Minnesota, North Dakota, and South Dakota.11 The selected regions
share relatively similar agro-economic conditions, such as soil fertility and rainfall. Stiegert, Shi, and
Chavas (2011) discuss that the core of the Corn Belt is where farmers are less likely to substitute
between corn and different crops, compared with the fringe region. These features are suited to my
demand estimation, which specifies a conditional demand for corn seeds given that allocation between
crops is predetermined.

I also focus on the years 2008-2014, which seem to undergo fewer structural changes in both demand
and supply. On the demand side, as Figure 1 shows, the introduction of triple-stacked traits in 2006
drastically changed the market situation. I expect that farmer preference is relatively stable after
the diffusion of the triple-stacked traits. On the supply side, major biotech firms engaged in many
acquisitions and mergers in the 2000s. In particular, the leading company, Monsanto, completed a
series of acquisitions by 2007. Thus, the structure of the industry has not experienced a considerable
change within the selected years, which is important for obtaining reliable estimates of firm conduct
parameters. As a result, there are 68,129 observations from 2008 to 2014.

11. I follow Stiegert, Shi, and Chavas (2011) for a definition of the core region, but I make a slight change to reflect
the trend of corn acreage in my estimation period.
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I define products as combinations of brand and GM traits following the previous papers that
estimate discrete choice demand using the same dataset (Ciliberto, Moschini, and Perry 2019; Luo,
Moschini, and Perry 2023). Corn farmers perceive the product qualities of corn seeds through brands
and types of GM traits. There are a large number of brands, which are sold by large seed firms or
other local/regional seed companies. I choose brands whose market shares are greater than 1% in the
estimation period. Smaller brands are aggregated into one brand for each parent company: Monsanto,
Dupont, Syngenta, Dow AgroSciences, AgReliant, and regional companies. I aggregate GM traits
to CB (corn borer), RW (rootworm), GT (glyphosate tolerance), double-stacked (CB RW, CB GT,
RW GT), and triple-stacked (CB RW GT). I do not treat Liberty Link as a separate trait because it
is usually considered a marker gene (Ciliberto, Moschini, and Perry 2019). I also drop products with
a single trait of RW or other herbicide tolerance because there are very few observations and their
market shares are less than 0.1% in the estimation years.

Table 2 shows the market shares of GM seeds calculated by brand and GM trait, respectively.
The market shares of products are measured in value, not in quantity, to maintain consistency with
discrete/continuous demand models. The table shows that Dekalb, owned by Monsanto, and Pioneer,
owned by Dupont, are two dominant brands that together have more than a 50% market share. These
brands keep a significant presence in the seed market, possibly due to brand loyalty and long-term
relationships with customers. The market share of triple-stacked seeds (CB RW GT) is larger than
70%. The triple-stacked seeds were introduced in 2006 and their shares expanded rapidly. On the
other hand, the market shares of seeds with other traits have decreased. In particular, the shares of
CB-single, CB RW, and RW GT are very small –about a 1% share.

Table 2: Brand and GM trait market shares

Parent company Brand Market share GM trait Market share
Monsanto Dekalb 35.7% CB-single 1.2%

Channel 4.2% GT-single 11.4%
Others 6.5% CB RW 1.0%

Dupont Pioneer 23.8% CB GT 11.5%
Others 1.0% RW GT 0.8%

Syngenta Golden Harvest 3.6% CB RW GT 74.1%
NK Seeds 1.2% Total 100%
Others 0.4%

Dow AgroSciences Mycogen 1.6%
Others 1.0%

AgReliant Agrigold 4.2%
LG Seeds 2.0%
Producer Hybrids 1.0%
Others 1.3%

Regional Myfeels Hybrids 2.2%
Croplan Genetics 1.7%
Beck’s Hybrids 1.4%
Others 7.2%

Total 100%

Note: Market shares of GM seeds are calculated by brands and GM traits over 2008-2014 in
the core region of the Corn Belt. GT, CB, and RW stand for glyphosate tolerance, corn borer
resistance, and rootworm resistance, respectively. Source: GfK Kynetec data.
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Table 3: Average seed prices

Year Conventional Single trait Double-Stacked Triple-Stacked
CB GT CB RW CB GT RW GT CB RW GT

2008 114.0 137.5 149.2 163.6 158.6 166.5 181.1
2009 140.3 159.1 180.8 185.1 191.2 200.4 232.5
2010 142.5 172.6 186.2 200.4 198.6 221.6 235.3
2011 147.2 184.0 188.5 199.1 208.6 219.9 236.3
2012 168.3 205.1 210.9 203.7 228.0 260.6 260.6
2013 177.7 243.3 225.3 235.7 247.6 260.1 276.5
2014 178.5 243.4 227.1 234.5 254.4 254.9 285.6

Note: The table reports the average seed prices paid by farmers ($/bag). GT, CB, and RW stand for
glyphosate tolerance, corn borer resistance, and rootworm resistance, respectively. Source: Kynetec
data

Table 4: Summary statistics of variables for demand estimation

Variable obs Mean Std. Dev. Min Max

Product share 5,749 0.275 0.057 0.00003 0.628
Relative price 5,749 1.446 0.291 0.442 2.859
GT 5,749 0.868 0.057 0 1
CB RW 5,749 0.056 0.231 0 1
CB GT 5,749 0.181 0.385 0 1
RW GT 5,749 0.022 0.146 0 1
CB RW GT 5,749 0.359 0.480 0 1

Farm size (100 acre) 34,489 6.241 6.517 0.08 108
Longitude 34,489 -92.46 3.286 -100.13 -86.65
Latitude 34,489 42.23 1.789 38.01 46.47

Note: Author’s computations from Kynetec data. Relative price is calcu-
lated by dividing the price of the product by the average price of conven-
tional seed in each market. GT, CB, and RW stand for glyphosate toler-
ance, corn borer resistance, and rootworm resistance, respectively. Farm
size is the corn-planted acreage of a farm. Longitude and latitude are the
center of the county where farmers cultivate corn.

The price of each product is calculated by dividing expenditure by purchase quantity (number of
bags). Table 3 reports the average prices for each GM trait. This shows stylized facts about seed
prices. First, all prices tend to increase over time. Second, the prices of GM seeds are consistently
higher than conventional (non-GM) seeds. The price of the triple-stacked seeds is the highest among
GM seeds. Third, the prices of GM seeds increase by more than the prices of conventional seeds.

The outside option is choosing conventional seeds. The average share of the outside option is 5%
in the sample. In the estimation, the price of each GM product is divided by the price of the outside
product.

I also construct farmer demographics from the same TraitTrak data to incorporate heterogeneity
of preferences. First, I calculate the corn-planted acreage of farmers as the farm size. This variable
is used to allow different price sensitivity parameters for different-sized farms. Second, following Shi,
Chavas, and Stiegert (2010), I construct location variables using longitude and latitude of the center
of the county where farmers cultivate their corn. These location variables are expected to reflect
different geographical conditions and to capture the heterogeneity of farmer preference for GM traits.
Summary statistics of variables used for demand estimation are presented in Table 4.

On the supply side, the expected price of corn is a major component of the marginal costs of seed
production. Seed firms sign a contract with farmers to produce commercial seeds in year t − 1 for
the firm to sell in year t (Fernandez-Cornejo 2004). Under the contract, seed companies must pay at
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least what farmers could have obtained if they had sold their own corn. Following Kim and Moschini
(2018) and Luo, Moschini, and Perry (2023), I use the previous year’s future corn price as a proxy
of the expected price of corn, which is used as the observed marginal cost shifter. To construct this
variable, I collect the data for corn futures prices from the database of Barchart.com. Using futures
prices with a delivery month of December, I average daily closing prices from January to March, which
are the periods before the planting season.

I utilize technological information about how firms incorporate GM traits licensed from others. For
instance, Pioneer’s product AcreMax Xtreme contains Monsanto’s YieldGard, Syngenta’s Agrisure,
and Dow-Dupont’s Herculex HX1 for insect resistance traits, as well as Monsanto’s Roundup Ready
and Bayer’s LibertyLink for herbicide tolerance. In this case, Dupont is supposed to pay certain
royalty fees to Monsanto, Syngenta, and Bayer for its utilization of their patented traits. Thus, I use
dummy variables that take the value 1 if the product contains the corresponding licensed trait. For
instance, if the product contains Monsanto’s traits and its seller is not Monsanto, the corresponding
dummy variable takes the value 1. Because the corn TraitTrak data set contains the names of specific
seed products such as SmartStack and AcreMax, I supplement it with technical documentation that
is available on company websites, to infer which GM traits are incorporated in the products.

The licensing dummy variables explain differences in how seed firms utilize licensed GM traits
from other firms. Monsanto mostly utilizes its own patented technologies: Roundup Ready and
YieldGard. Dupont and Dow rely heavily on Monsanto’s traits; more than 80% of their products
incorporate Roundup Ready. In addition, they incorporate Bayer’s Liberty Link for 70% and 50% of
their products. On the other hand, Syngenta does not use Monsanto’s traits as much as the other
firms. Syngenta utilizes its own patented trait, Agrisure, and also uses Bayer’s trait. Lastly, AgReliant,
which does not own any patented GM traits, extensively utilizes Monsanto’s traits. More than 90% of
the products use Monsanto’s Roundup Ready and YieldGard, while the utilization rate of other firms’
traits is fairly low. To summarize, how firms rely on licensed traits affects marginal costs through
payments of licensing fees. In this sense, Monsanto and Syngenta are expected to be cost-efficient
firms, while Dupont, Dow, and AgReliant’s marginal costs may be higher due to licensing fees.

Table 5 shows the summary statistics of variables for supply estimation. I calculate them for the
entire sample (all firms) and each firm, respectively. In the supply estimation, I focus on the largest
five firms: Monsanto, Dupont, Syngenta, Dow AgroSciences, and AgReliant.
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Table 5: Summary statistics of variables for supply estimation

Variable obs Mean Std. Dev. Min Max

All firms Product price 4,448 215.6 45.7 74.0 350.4
Firm-level share 4,448 0.215 0.193 0.0005 0.757
License Roundup Ready 4,448 0.757 0.480 0 1
License YieldGard 4,448 0.393 0.473 0 1
License DowDupont 4,448 0.045 0.162 0 1
License Syngenta 4,448 0.111 0.085 0 1
License Bayer 4,448 0.359 0.458 0 1
Corn future price 4,448 495.0 80.30 398.3 589.4

By Firms

Monsanto Product price 1,237 222.9 47.13 77.54 350.4
Firm-level share 1,237 0.467 0.118 0.141 0.757
License Roundup Ready 1,237 0 0 0 0
License YieldGard 1,237 0 0 0 0
License DowDupont 1,237 0.105 0.236 0 1
License Syngenta 1,237 0 0 0 0
License Bayer 1,237 0.105 0.236 0 1

Dupont Product price 893 220.0 39.29 100.0 319.0
Firm-level share 893 0.254 0.101 0.054 0.543
License Roundup Ready 893 0.838 0.363 0 1
License YieldGard 893 0.423 0.454 0 1
License DowDupont 893 0 0 0 0
License Syngenta 893 0.037 0.151 0 1
License Bayer 893 0.708 0.446 0 1

Syngenta Product price 820 195.9 41.85 74.0 327.6
Firm-level share 893 0.056 0.027 0.001 0.161
License Roundup Ready 820 0.052 0.197 0 1
License YieldGard 820 0.057 0207 0 1
License DowDupont 820 0.033 0.134 0 1
License Syngenta 820 0 0 0 0
License Bayer 820 0.676 0.460 0 1

Dow AgroSciences Product price 557 215.2 47.42 91.0 342.0
Firm-level share 500 0.030 0.021 0.0005 0.156
License Roundup Ready 500 0.832 0.365 0 1
License YieldGard 500 0.682 0.426 0 1
License DowDupont 500 0 0 0 0
License Syngenta 500 0.026 0.137 0 1
License Bayer 500 0.498 0.474 0 1

AgReliant Product price 999 219.2 46.84 88.89 345.75
Firm-level share 999 0.090 0.065 0.012 0.545
License Roundup Ready 998 0.928 0.253 0 1
License YieldGard 998 0.972 0.156 0 1
License DowDupont 998 0.044 0.160 0 1
License Syngenta 998 0.004 0.043 0 1
License Bayer 998 0.046 0.161 0 1

Note: Roundup Ready and YieldGard are owned by Monsanto. Author’s computations from
Kynetec data. License variables are dummy variables that take the value 1 if a firm uses the
corresponding trait owned by the other firms.
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4.2 Identification

I discuss my identification strategy to estimate the parameters of the demand and supply models. On
the demand side, the key identification issue is the endogeneity of seed prices that are attributed to the
fact that oligopolistic firms set their prices by taking into account the unobserved demand shifter that
is unknown to researchers. The inclusion of multiple fixed effects is expected to alleviate the price
endogeneity. However, it is still necessary to use valid instruments to obtain consistent estimates,
because the OLS estimate of the price coefficient is positive even after controlling brand, region
and year fixed effects, as discussed in the next section. I rely on the commonly used identification
assumption that the product characteristics are uncorrelated with the error term (Berry, Levinsohn,
and Pakes 1995).

This assumption seems fairly reasonable in the seed industry as is discussed in Ciliberto, Moschini,
and Perry (2019), which estimates the nested logit demand models for the US corn and soybean seeds
market. They argue that the introduction of new products is predetermined and is largely exogenous
to pricing decisions because the introduction of GM seeds to the market requires a lengthy and complex
process, including extensive molecular and agronomic testing, repeated breeding with elite germplasm,
and clearing GM regulatory hurdles.

To construct instruments using product characteristics of GM seeds, I count the number of products
that embed each GM trait (CB, GT, CB RW, CB GT, RW GT, CB RW GT), following the same
idea used in Ciliberto, Moschini, and Perry (2019). Then, I calculate the interaction of the counting
numbers in each market with the dummy variables that take the value 1 if the product has the
corresponding trait. There are six instrumental variables for the price coefficient.

It is also necessary to construct instruments for random coefficients on demographic variables.
Following Romeo (2013) and Miller and Weinberg (2017), I exploit cross-market variation of demo-
graphic variables. Specifically, I compute the mean and variance of longitude and latitude at each
market. Then, they interact with exogenous product characteristics (CB, GT, CB RW, CB GT,
RW GT, CB RW GT). There are 20 instrumental variables for 10 non-linear parameters of longitude
and latitude. I follow the same idea for a random coefficient related to farm size, but the farm size
variable interacts with the logarithm of endogenous price. Therefore, to compute the predicted value
of the logarithm of price, I first regress the logarithm of price on the six instruments used for the price
coefficient. Then, the predicted log price interacts with the mean and variance of farm size in each
market. This generates two instruments. In total, my demand estimation uses 28 instruments (6 IVs
for the price coefficient, and 22 IVs for the non-linear parameters).

On the supply side, it is necessary to deal with the endogeneity of the markups that are correlated
with unobserved marginal costs. This is because the markups are functions of the firm-level market
share and two demand elasticities, all of which are functions of unobserved marginal costs through
endogenous prices. To obtain consistent estimates of conduct parameters, it is necessary to find
excluded instruments that are correlated with the markups but uncorrelated with the unobserved
marginal costs. Berry and Haile (2014) argue that candidates for instruments require variation in
market conditions that rotate the marginal revenue curve, which includes the number of competing
firms, the set of competing goods, characteristics of competing products, or costs of competing firms.
Following their argument, I use the number of rival firms’ products interacting with firm dummy
variables as excluded instruments. It is expected that the number of rivals’ products affects the market
share and substitutability between products and thus shifts the optimal markups. The assumption
of identification is that they are uncorrelated with the unobservable marginal costs. This seems
fairly reasonable in the seed industry because the marginal cost of seed production is not likely to be
correlated with the number of rival products.

5 Empirical results

5.1 Demand estimates

Table 6 presents the results of the seed demand estimation. Columns (i) and (ii) correspond to
the discrete/continuous logit with OLS and efficient GMM estimators. Column (iii) corresponds to
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the discrete/continuous logit with random coefficients interacting with farmer demographics. All
specifications include brand, CRD, and year-fixed effects. I use the pyBLP python package developed
by Conlon and Gortmaker (2020) for estimations.

Table 6: Demand estimates

(i) (ii) (iii)
Demand model DC-Logit DC-Logit DC-RCL
Estimator OLS GMM GMM

Mean (β)
log(Price) 1.259*** -2.018*** -5.836***

(0.122) (0.580) (0.933)
GT 0.538*** 0.790*** 1.265***

(0.073) (0.089) (0.143)
CB RW 0.070 0.467*** 1.104***

(0.097) (0.127) (0.205)
CB GT -0.066 0.107 0.412***

(0.054) (0.072) (0.101)
RW GT -1.265*** -0.927*** -0.316

(0.124) (0.155) (0.232)
CB RW GT 1.281*** 2.021*** 2.905***

(0.048) (0.135) (0.220)

Demographics interaction(Π) Farmsize Longitude Latitude
log(Price) -0.320***

(0.092)
GT 0.657*** 0.805***

(0.187) (0.190)
CB RW -0.036 0.173

(0.245) (0.247)
CB GT -0.349*** -0.165

(0.129) (0.122)
RW GT -0.714** -0.429

(0.342) (0.312)
CB RW GT 0.290*** 0.202**

(0.093) (0.096)

Mean of price elasticities
Own-price 0.224 -3.002 -6.871
Cross-price -0.033 0.053 0.158

Mean of elasticities of substitution
Intra-sectoral elasticity 7.059
Inter-sectoral elasticity 1.290

Notes: DC-logit and DC-RCL refer to the discrete/continuous logit model and the discrete/continuous
random coefficient logit. In the parameters, GT, CB, and RW stand for GM traits of glyphosate
tolerance, corn borer resistance, and rootworm resistance, respectively. All of the estimates include
brand, CRD, and year-fixed effects. Standard errors are robust standard errors. The number of
observations is 5,794. ∗, ∗∗, ∗ ∗ ∗ denote significance of the test statistic at the 10%, 5%, and 1% level,
respectively.

The price coefficient is positive in the OLS estimation, suggesting that prices are indeed endoge-
nous. In two GMM estimations, it is negative as expected and statistically significant at the 1% level.
The results indicate that the excluded instruments are valid in the sense that the upward bias on the
price coefficient decreases in the right direction. In specification (iii), the estimate of the log(p)-farm
size interaction parameter is negative and statistically significant at the 1% level. The negative value
indicates that larger farmers are more sensitive to price. Figure 6 shows the distribution of estimated

22



Figure 6: Estimaetd distribution of price coefficients among farmers in all markets

αi(= α+ Πα farmsizei) in all markets. The shape of the distribution reflects the empirical distribu-
tion of the farm size variable, which is relatively left-tailed due to the existence of very large farms.
The value of α ranges from −5.53 to −10.83 between farmers. All farmers have a negative preference
for higher prices, as expected.

The mean of the estimated own-price elasticities is −6.87 for the DC-RCL specification, indicating
that the product-level demand for GM seeds is quite elastic. This value is very close to the own-price
elasticity −6.99 in Ciliberto, Moschini, and Perry (2019), which estimates the nested logit demand
model for corn and soybean seed in the US over 1996-2011. The mean of the cross-price elasticities is
0.158, which indicates that different types of GM corn seeds are imperfect substitutes for each other.

The average values of estimated intra- and inter-sectoral elasticities of substitution are 7.059 and
1.290, respectively. The value of intra-sectoral elasticity is much larger than the value of inter-sectoral
elasticity, as expected. This is consistent with the definitions of these elasticities, in which the
intra-sectoral elasticity measures substitutability between GM seeds, while the inter-sectoral elas-
ticity measures substitutability against the outside product (non-GM seeds). The larger value of the
intra-sectoral elasticity indicates that GM products are more substitutable with other GM products
compared to non-GM products. The low value of the inter-sectoral elasticity indicates that the mar-
ket demand for GM seeds is fairly inelastic. Because the estimates of these elasticities are used for
a supply-side estimation, I show the distribution of the estimates in all markets in Figures 7 and 8.
The figures indicate that they range from 6.710 to 11.331 and 1.001 to 4.264, respectively. There are
distinct variations across markets, reflecting farmer preference and market conditions such as product
availability.

The coefficients (β) associated with the GM trait dummy variables are positive and precisely
estimated, other than βRW GT . The values of these parameters are measured as a difference from
the value of CB. The result, βGT = 1.265, indicates that farmers value the glyphosate tolerance trait
more than the corn borer resistance trait. This is consistent with the results of Ciliberto, Moschini,
and Perry (2019), which finds that farmers’ willingness to pay for the GT trait is higher than the CB
trait after 2007. The coefficients of the stacked traits are also positive, indicating that farmers value
the stacked traits more than the CB trait. The only exception is βRW GT , which is negative. The
negative value suggests that farmers see little additional value in stacking RW with GT, although this
coefficient is insignificant.12

The demographics interaction parameters of each trait (Πβ) are statistically significant at the 5%
level for 6 out of 10 parameters. The positive value of longitude and latitude means that farmers

12. This imprecise estimate may be due to a very small market share of products with RW GT. Its market share is
less than 1% in the entire sample. Also, since there are no observations with the single-RW trait, it may be difficult to
identify the value of RW separately from GT.
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Figure 7: Estimated distribution of intra-
sectoral elasticities of substitution in all markets

Figure 8: Estimated distribution of inter-
sectoral elasticities of substitution in all markets

put more value on the corresponding trait from south to north and from west to east, respectively.
The results show that farmers tend to value GT and CB RW GT more to the north and east of the
core region of the Corn Belt, while farmers tend to value CB GT and RW GT more in the south.
These statistically significant coefficients reflect preference heterogeneity between farmers in different
locations.

To obtain the economic interpretation of these coefficients, I compute farmers’ willingness to pay
(WTP). In the standard logit, it is well known that the ratio of a coefficient of the product charac-
teristics of interest to a price coefficient indicates willingness to pay (see Train 2009). In my demand
specification, the price term enters logarithmically in the conditional indirect utility function. Thus,
I calculate WTP using the following formula.

WTPGTi = βGTi /(αi/pi)

WTPCB RW
i = βCB RW

i /(αi/pi)

WTPCB GT
i = (βGTi + βCB GT

i )/(αi/pi)

WTPRW GT
i = (βGTi + βRW GT

i )/(αi/pi)

WTPCB RW GT
i = (βGTi + βCB RW RW

i )/(αi/pi)

Table 7 reports the results of the estimated distribution of farmers’ WTP for each GM trait. These
estimates of WTP are measured as a difference from the CB trait, which is used as a reference in the
estimation. Farmers have different WTP depending on their demographic variables. I present the
median, 10th percentile, and 90th percentile of the estimated distribution.

The estimated values of WTP take the highest value for the triple-stacked traits (CB RW GT),
indicating that the median value is $154.35 per bag. The result is consistent with its large market
share, which is over 70% in the entire sample. Also, the WTP estimates of CB GT and GT tend
to be higher than the remaining traits, reflecting their relatively larger market shares. The results
also indicate that the estimates of WTP tend to be higher than the observed price difference. In
particular, the WTP for the triple-stacked traits is larger than the observed price difference for most
of the farmers, as the WTP at the 10th percentile is still larger than the price difference. This
suggests that the introduction of the stacked GM traits significantly increases farmers’ welfare, which
is consistent with the empirical findings by Ciliberto, Moschini, and Perry (2019).

Overall, I judge that the results of the DC-RCL specification are reasonable and economically
meaningful. I use this result for the subsequent supply-side estimation, which is of main interest.
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Table 7: Estimates of willingness-to-pay

Distribution of willingness to pay Observed
10th percentile Median 90th percentile price difference

GT − CB 20.86 46.11 77.76 26.87
(5.14) (6.07) (10.96)

CB RW − CB 25.55 41.24 58.55 18.91
(5.15) (6.18) (10.54)

CB GT − CB 34.63 62.12 93.51 46.09
(5.10) (6.07) (10.33)

RW GT − CB 11.60 35.48 60.25 29.55
(11.26) (8.68) (14.19)

CB RW GT − CB 100.94 154.35 219.76 79.26
(10.07) (15.58) (23.17)

Notes: GT, CB, and RW stand for glyphosate tolerance, corn borer resistance, and root-
worm resistance, respectively. The estimates of willingness to pay are measured as a
difference from CB, which is used as a reference trait in the estimation. Values in paren-
theses are standard errors that are calculated by parametric bootstrap using the asymp-
totic distribution of the estimated parameters. The number of simulation draws is 1,000.
Observed price differences are calculated as the average of differences between the prices
of CB alone and each trait of each market.

5.2 Supply estimates

On the supply side, I estimate parameters of firm conduct and marginal cost given the estimated
demand-side parameters. This two-step estimation is computationally less demanding and has been
used in past research (Miller and Weinberg 2017; Michel, Manuel Paz y Mino, and Weiergraeber 2023).
In the two-step procedure, the estimation errors of the demand parameters need to be considered.
Therefore, I calculate robust standard errors that account for the inclusion of the demand parameters,
following Wooldridge (2010). In the estimation, I use OLS to concentrate the linear marginal cost
parameters and CRD fixed effects out of the optimization problem, which reduces the dimensionality
of the nonlinear search to only five conduct parameters.

Table 8 presents the results of the supply-side parameters using an efficient GMM estimator. The
conduct parameters for the five firms are all precisely estimated and take values from 0 to 1, as the
theoretical model requires. The results show that the conduct of these firms is imperfect collusion, in
the sense that the estimated conduct parameters are values between collusion (θf = 0) and quantity
competition (θf = 0.16).13 The low values of the conduct parameters might reflect coordination
between firms, internalization by the licensing firms, or both. In the seed industry, the licensing
firms can earn additional profits from sales made by the licensed firms, which gives the licensing firms
additional incentives to sustain higher prices.

Table 9 indicates the results of hypothesis testing on the benchmark conduct. The testing results
strongly reject price competition and monopolistic competition, both of which are more competitive
conduct than quantity competition.14 Collusive conduct is also rejected for all firms at the 1% signif-
icance level. The results also reject quantity competition for all firms, with significance levels at 10%
for Monsanto, 5% for Dupont, and 1% for the other three firms.

13. In the case of quantity competition, θf = 1/(1 + ηj/σj), where (ηj , σj) are the intra- and inter-sectoral elasticities
of substitution of product j. I calculate this value using the average of the elasticities in the sample.

14. Pricing competition is more competitive than quantity competition when the intra-sectoral elasticity of substitution
is larger than the inter-sectoral elasticity of substitution. My results of demand estimation satisfy this inequality.
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Table 8: Supply estimates

Coefficient Standard Error

θf (firm conduct) Monsanto 0.106*** 0.027
Dupont 0.092*** 0.025
Syngenta 0.015*** 0.004
Dow AgroSciencies 0.008*** 0.002
AgReliant 0.020*** 0.006

γ (marginal cost) Corn future price 0.136*** 0.005
License RoundupReady 15.387*** 1.346
License Y ieldGard 8.273*** 1.499
License DowDupont 17.535*** 3.470
License Syngenta 4.665 4.278
License Bayer 19.495*** 1.082

Notes: The estimation includes CRD fixed effects. Roundup Ready and YieldGard
are owned by Monsanto. Standard errors are robust standard errors that account
for two-step estimation. The number of observations is 4,448. ∗ ∗ ∗ denotes signif-
icance of the test statistic at the 1%-level.

Table 9: Hypothesis testing on benchmark conduct

Null Hypothesis Collusion Quantity competition Price competition Monopolistic competition
θf = 0 θf = 0.16 θf = 0.5 θf = 1

t-statistics

Monsanto 3.956*** 1.833∗ 14.705*** 33.366***
Dupont 3.567*** 2.512** 16.173*** 36.016***
Syngenta 3.401*** 33.153*** 116.432*** 236.422***
Dow AgroSciencies 3.401*** 62.377*** 215.099*** 433.599***
AgReliant 3.444*** 22.855*** 81.003*** 165.45***

Notes: The table reports the t-statistics associated with the associated hypothesis. In the case of quantity
competition, θf = 1/(1 + ηj/σj), where (ηj , σj) are the intra- and inter-sectoral elasticities of substitution of
product j. I calculate this value using the average of the elasticities, which is 0.16. Standard errors account for
two-step estimation. ∗, ∗∗, ∗∗∗ denote significance of the test statistic at the 10%, 5%, and 1% level, respectively.

Back to Table 8, the marginal cost parameters are all positive, as expected. The positive coefficient
on corn future price implies that seed firms must pay more to corn farmers when corn price is expected
to increase in the future. The positive parameters on the dummy variables for licensed traits indicate
that the utilization of licensed traits increases marginal costs. This result reflects the fact that, through
licensing agreements, firms are supposed to pay a licensing fee to licensors when they incorporate
patented traits. The parameters for Monsanto’s two traits (Roundup Ready and YieldGard) are
precisely estimated. The value for YieldGard is relatively smaller, possibly reflecting the smaller
WTP for CB compared to GT. The other parameters also take positive values. Bayer’s trait (Liberty
Link) and DowDupont’s trait (Herculex) take larger values, while the value is smaller for Syngenta’s
trait (Agrisure).15

To understand the economic meaning of these estimates, I calculate marginal costs and markups
for these firms. The results are shown in Table 10. The average values of the marginal costs are
lower for Monsanto ($108) and Syngenta ($118), while the other three firms have higher marginal
costs ($128-136). The structure of patented traits explains these marginal cost differences. Monsanto
and Syngenta mainly use their own patented GM traits, but Syngenta additionally uses Bayer’s trait
for about 70% of their products, while Monsanto uses it for only 10% of their products. This makes

15. The estimates of License Syngenta are imprecise. As Table 5 shows, the market shares of the products with this
licensed trait are fairly small. This limited variation of the data may cause imprecise estimates.
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Table 10: Estimates of marginal costs and markups of GM seeds

Price (in $) Marginal cost (in $) Markup (in $) Relative markup
p mc p−mc (p−mc)/p

(observed) (estimated) (estimated) (estimated)

Monsanto 222.88 108.15 114.73 51.45%
[95% CI] [88.07, 128.22] [94.65, 134.81] [42.49, 60.43]

Dupont 219.97 136.13 83.85 37.89%
[95% CI] [114.88, 157.37] [62.60, 105.09] [28.28, 47.50]

Syngenta 195.86 117.78 78.08 39.8%
[95% CI] [98.62, 136,94] [58.92, 97.25] [30.06, 49.57]

Dow AgroSciencies 215.17 130.66 84.51 39.08%
[95% CI] [108.75, 152.56] [62.61, 106.42] [28.93, 49.21]

AgReliant 219.18 128.31 90.87 41.12%
[95% CI] [106.63, 150.00] [69.19, 112.55] [31.32, 51.00]

Notes: The table reposts the average of observed prices, estimated marginal costs, and markups
of GM seeds. The price, marginal cost, and markup are US dollars per bag. 95% confidence
intervals are calculated by parametric bootstrap using the asymptotic distribution of the estimated
parameters. The number of simulation draws is 1,000.

Monsanto more cost-efficient than Syngenta. On the other hand, Dupont, Dow, and AgReliant heavily
rely on Monsanto’s GM traits, which results in additional licensing costs. To better see this tendency, I
show a kernel density of estimated marginal costs in all markets for Monsanto, Syngenta, and Dupont
in Figure 9. It shows the clear ranking of the marginal cost efficiency of these three firms.

The estimates of markups are also shown in Table 10. Monsanto charges the highest markup, while
the other firms charge their markups in relatively similar ranges. The average values of the relative
markup (= (p−mc)/p) are 51.45% for Monsanto and 37.89− 41.12% for the other four firms. Figure
10 shows the estimated distribution of markups for Monsanto, Syngenta, and Dupont. It indicates
that Monsanto tends to change higher markups than the other two firms.

To summarize, the results indicate that the conduct of the seed firms is between collusive con-
duct and quantity competition, with a strong rejection of pricing competition, and the low degree of
competition translating into high markups.

Figure 9: Estimated distribution of marginal
costs (in $ per bag)

Figure 10: Estimated distribution of markups
(p−mc) (in $ per bag)

5.3 Counterfactual simulations

Welfare analysis can be conducted based on the structural model. To quantify the importance of
the estimated firm conduct, I conduct counterfactual simulations about how changes in firm conduct
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would affect market outcomes. I analyze three counterfactual scenarios. First, I consider the situation
in which the conduct of all firms is price competition (CF1 θf = 0.5 for all firms), which is referred
to as competitive conduct in the following discussion. Next, I consider the situations in which the
conduct of a subset of the firms is competitive. Based on the observed market shares, I categorize the
five seed firms into two groups: large firms (Monsanto and Dupont) and small firms (Syngenta, Dow
AgroSciencies, and AgReliant). I analyze two scenarios in which the conduct is competitive for only
large firms (CF2: θf = 0.5 for large firms, θf = θ∗(the estimated values) for small firms) and for only
small firms (CF3: θf = θ∗ for large firms, θf = 0.5 for small firms).

In each simulation, I set the values of conduct parameters depending on the considered scenario.
Then, I generate new equilibria by solving firms’ first-order conditions with fixed-point iterations.
The calculations are conducted separately for each market. I find that the fixed-point iterations
attain convergence within 500 iterations. I assume that the price of regional seed firms and the price
of outside products are unchanged, as my supply model focuses on the five seed firms. Also, I assume
that the marginal costs are fixed in the simulations.

I denote the new equilibrium price as p1 for each scenario and the observed (baseline) price
as p0. As a measure of consumer welfare, I use a compensating variation. Following Dubé, Joo,
and Kim (2023), the consumer’s compensating variation for a change in price from p0 to p1 in the
discrete/continuous logit demand model is:

CV = Y 0 I(δ(p1))− I(δ(p0))

I(δ(p1))
(14)

where

I(δ(p)) = exp

− I∑
i=1

wi ln

(
1 +

J∑
k=1

exp(δk(pk) + νi(Π))

)1/αi
 (15)

In addition, as a measure of producer surplus, I calculate the difference in the sum of firms’ variable
profits from p0 to p1.

∆PS =
F∑
f=1

(πf (p1)− πf (p0)) (16)

Table 11 presents the results of counterfactual simulations. I report the change in price, quantity,
firm profit, farmer surplus, and total welfare. In CF1, in which the conduct is competitive for all firms,
the average price decreases by 29%. Firm profits decrease by 3,032 million dollars. On the other hand,
farmer surplus increases by 6,682 million dollars. As a result, total welfare increases by 3,650 million
dollars. The simulation results of CF2 and CF3 highlight how the effects of increased competition on
market outcomes differ when the conduct of large firms and small firms changes in different ways. The
values of the total welfare change are 3,155 million dollars in CF2 and 1,736 million dollars in CF3.
The former result is similar to CF1, indicating that the conduct of large firms is more important in
terms of total welfare.
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Table 11: Welfare analysis from counterfactual simulations

CF1 CF2 CF3

Hypothetical conduct
Large firms Competitive Competitive Non-Competitive
Small firms Competitive Non-Competitive Competitive

Simulation results
∆ Price (in %) -28.718 -18.936 -19.959
∆ Quantity (in mio-bag) 57.729 41.710 39.432

∆ Firm profit (in mio-USD) -3031.770 -2042.901 -2178.464
∆ Farmer surplus (in mio-USD) 6681.594 5197.968 3914.924

∆ Total welfare (in mio-USD) 3649.825 3155.067 1736.460

Note: ‘Competitive’ indicates the conduct parameter (θf ) takes 0.5 and ‘Non-competitive’ in-
dicates the conduct parameter (θf ) takes the estimated values given in Table 8. The simulation
results are changes of each variable from the base scenario in which the conduct of all firms
is non-competitive. CF1: The conduct of all firms is competitive. CF2: The conduct of the
large firms (Monsanto and Dupont) is competitive, while the small firms (Syngenta, Dow, and
AgReliant) remain non-competitive. CF3: The conduct of small firms is competitive, while the
large firms remain non-competitive. Price changes are averages over all markets. For quantity,
firm profit, farmer surplus, and total welfare, I report the total changes aggregated over all
years and all CRDs.

Next, to see how different conduct affects the price and profits of each firm, I report the firm-
level values of each counterfactual simulation in Table 12. In CF1, all firms lower their prices due
to competitive conduct. In this case, the quantity increases for all firms by stealing demand from
the regional seed firms and the outside option, but the negative effects of the price decrease exceed
the positive effects of the quantity increase, and the firm profits decrease for all firms. In CF2, the
large firms with competitive conduct lower their prices by more than 20%. The smaller firms, whose
conduct remains non-competitive, also lower their prices due to the strategic complements of pricing.
Firm profits decrease for all firms. On the other hand, the result of CF3 shows a different tendency
from CF1 and CF2. In CF3, the prices decrease by more than 25% for smaller firms whose conduct
is competitive. The decreases in the relative prices increase their quantity. As a result, small firms
obtain higher profits.

The counterfactual results show that the seed firms extract substantial surplus from farmers by
setting prices higher than the competitive level. If the seed firms were to behave more competitively,
total welfare would significantly increase. Also, the results of the firm-level decomposition indicate that
the effects of more competitive conduct are disproportionate among firms. When the conduct becomes
more competitive, the profits of the large firms decrease more than the profits of the small firms,
because the price decrease significantly reduces the current sales of large firms. This negative impact
might induce the large firms to behave less competitively and sustain higher prices. On the other
hand, the profits for the smaller firms would increase if they lower their prices. This result suggests
that the smaller firms might have an incentive to deviate from the imperfect collusive equilibrium by
lowering their prices and stealing market demand, at least in the short run. However, there are several
possible explanations for why the smaller firms do not deviate. For instance, they may consider long-
run profits. The results of the counterfactual show that small firms can increase their profits in CF3,
but their profits decrease in CF1 and CF2. This indicates that, if large firms also lower their prices
when small firms lower their prices, all firms lose some profits. These results also imply that the large
firms may be price leaders, while the small firms are followers. To analyze this point, a dynamic model
needs to be considered as proposed in Miller, Sheu, and Weinberg (2021). Another possibility is that
the small firms might have different strategic incentives related to complicated licensing agreements.
I do not formally analyze these issues further, and this remains a future task.
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Table 12: Firm-level decomposition of counterfactual results

CF1 CF2 CF3

Hypothetical conduct
Large firms Competitive Competitive Non-Competitive
Small firms Competitive Non-Competitive Competitive

Simulation results
∆ Price (in %)
Monsanto -31.151 -26.975 -12.434
Dupont -24.428 -23.034 -10.113
Syngenta -29.061 -13.427 -27.858
Dow AgroSciencies -28.376 -13.138 -27.676
AgReliant -29.428 -12.735 -27.738

∆ Quantity (in mio-bag)
Monsanto 31.797 36.799 -5.577
Dupont 3.614 10.962 -6.547
Syngenta 5.820 -2.086 16.728
Dow AgroSciencies 4.462 -0.996 11.144
AgReliant 12.037 -2.970 23.694

∆ Firm profits (in mio-USD)
Monsanto -1309.216 -327.812 -1731.756
Dupont -1212.264 -842.320 -961.949
Syngenta -221.295 -281.783 103.533
Dow AgroSciencies -82.630 -146.005 123.185
AgReliant -206.363 -444.982 288.523

Note: ‘Competitive’ indicates that the conduct parameter (θf ) takes 0.5 and ‘Non-
competitive’ indicates that the conduct parameter (θf ) takes the estimated values given in
Table 8. The simulation results are changes of each variable from the base scenario in which
the conduct of all firms is non-competitive. CF1: The conduct of all firms is competitive
for all firms. CF2: The conduct of the large firms (Monsanto and Dupont) is competitive,
while the small firms (Syngenta, Dow, and AgReliant) remain non-competitive. CF3: The
conduct of small firms is competitive, while the large firms remain non-competitive. Price
changes are averages over all markets. For quantity and firm profit, I report the total
changes aggregated over all years and all CRDs.

6 Conclusion

This paper develops a new structural model of demand and supply that is useful for the estimation of
firm-specific conduct parameters in a differentiated products market. The proposed model allows for
the flexible estimation of the degree of collusion and is also empirically tractable even when conduct
parameters of many multiproduct firms are estimated. Thus, the model overcomes the limitations of
the existing models that suffer from the curse of dimensionality. A key assumption of the model is that
competition can be formulated by two dimensions: one is competition within differentiated products
and the other is competition against an outside product. This requirement is compatible with the
standard settings using the discrete choice demand models without additional assumptions.

A limitation of the model is that it cannot identify pair-wise relationships of coordination. The
existing methods are suitable for analyzing such pair-wise relationships, but they are applicable only
when the number of parameters is reduced sufficiently. Instead, the proposed model is suitable for
analyzing the degrees of collusion of many firms toward the whole market.

I apply the proposed model to the US corn seed industry, in which there are longstanding concerns
about the negative impacts of growing market power on market outcomes, while the related empirical
evidence is limited. I estimate firm-specific conduct parameters for the five largest firms. The results
indicate that all firms are engaged in imperfect collusion. The results of counterfactual simulations in-
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dicate that seed firms extract substantial rent from farmers through collusive pricing. This application
proves the applicability of the model and provides new empirical evidence on the degree of collusion
in the seed industry, which has been subject to numerous anti-trust regulations in many countries.
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Appendix A Further details on derivations

A.1 Derivations of demand functions in market share and size constraint

I show how to derive firm-level Hicksian demand and market-level Marshallian demand functions
in market share and market size constraints using a discrete/continuous logit demand model. Two
constraints are given as follows.

Qf (qf ) ≤ Hf (pf ,p−f , Q(qf , q−f )) (market share constraint)

Q(qf , q−f ) ≤ D(pf ,p−f , Y ) (market size constraint)

First, I derive the expected demand of product j conditional on choosing inside products (j =
1, ..., J).

qj|in(p, YIn) =
1

I

I∑
i=1

exp(δj + νij(Π))∑J
k=1 exp(δk + νi(Π))

Yin
pj

= sj|in(p)
Yin
pj

(17)

where sj|in is the choice probability of product j conditional on choosing the inside products, δj =
x′jβ − α ln pj + ξj is the mean utility from product j. Yin is the expenditure on the inside products.
Notice that the denominator of this conditional choice probability does not include the mean utility
of the outside product (exp(δ0) = 1).

Dubé, Joo, and Kim (2023) show that the expected demand system derived from the discrete/continuous
demand model is integral because it satisfies the necessary and sufficient conditions from Hurwicz and
Uzawa (1971). This integrability ensures recovering an expenditure function of the representative
consumer corresponding to the conditional demand system given in (17).

Following Dubé, Joo, and Kim (2023), I derive the expenditure function as:

e(p, Q) = exp

−1

I

I∑
i=1

ln

(
J∑
k=1

exp(δk + νi(Π))

)1/αi
Q = P (p)Q (18)

where P and Q are the price and quantity aggregators of all inside products.
Using this price aggregator, the Marshallian demand function D is:

D =

J∑
j=1

sj
Y

P (p)
= Sin

Y

P (p)
(19)

where Sin is the total market share of all inside products, Sin =
∑J

j=1 sj(δ).
Similarly, I derive the expected demand of product j conditional on choosing products of firm f .

qj|f (pf , Yf ) =
1

I

I∑
i=1

exp(δj + νij(Π))∑
k∈Ωf

exp(δk + νi(Π))

Yf
pj

= sj|f (pf )
Yf
pj

(20)

where sj|f is the choice probability of product j conditional on choosing the products of firm f . Yf is
the expenditure on the products of firm f .

Using the same integrability result above, the expenditure function corresponding to the demand
system given in (20) is

Yf = ef (pf , Qf ) = exp

−1

I

I∑
i=1

ln

∑
k∈Ωf

exp(δk + νi(Π))

1/αi
Qf = Pf (pf )Qf (21)

where Pf and Qf are the price and quantity aggregators of the products produced by firm f .
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Using this firm-level price aggregator, the Hicksian demand function Hf is:

Hf =
∑
j∈Ωf

sj|in
Yin

Pf (pf )
= Sf |in

P (p)Q

Pf (pf )
(22)

where sj|in is the conditional market share of product j within the inside products. Sf |in is the
conditional market share of firm f ’s products, Sf |in =

∑
j∈Ωf

sj|in.

The discrete/continuous demand system has a homothetic preference as the expenditure function
has a multiplicative form of the price aggregator and quantity aggregator (see equation (18) and (21)).
The homotheticity generates the following useful properties.

∂ lnQ

∂ ln qj
=
∂ lnP

∂ ln pj
= sj|in,

∂ lnQf
∂ ln qj

=
∂ lnPf
∂ ln pj

= sj|f
∂ lnHf

∂ lnQ
= 1 (23)

where these equations are derived from the first-order conditions of the consumer expenditure mini-
mization problem and the functional form of the expenditure functions.

Several remarks should be made. Formulating two constraints in the firms’ profit maximization
problem is key and discrete/continuous demand models are compatible with the formulation. On the
other hand, the standard logit demand models are not necessarily consistent with this formulation
because they may fail to satisfy the integrability property for some situations (Nocke and Schutz 2018;
Dubé, Joo, and Kim 2023). The failure of the integrability means that it is not possible to recover
an expenditure function nor a utility function of a representative consumer. If these functions are
not recovered, the existence of relevant price and quantity aggregators is not ensured. As a result,
deriving demand functions in two constraints is not possible in general.

A.2 Derivations of intra- and inter-sectoral elasticity of substitution

I show how to derive Intra- and Inter-sectoral elasticities of substitution.

A.2.1 Intra-sectoral elasticity of substitution

By totally differentiating the market share constraint with equality and setting dpk = dqk = 0 for
k 6= j, we have

∂Qf
∂qj

dqj =
∂Hf

∂pj
dpj +

∂Hf

∂Q

∂Q

∂qj
dqj for j ∈ Ωf

By arranging the terms and dividing both sides by pj/qj , we have the intra-sectoral elasticity of
substitution of product j.

d ln qj
d ln pj

∣∣∣
Qf (qf )=Hf (pf ,Q(q))

= −

∂ lnHf

∂ ln pj
∂ lnQf
∂ ln qj

− ∂ lnQ

∂ ln qj

for j ∈ Ωf (24)

where
∂ lnHf

∂ lnQ
= 1 due to homothetic preference.

This elasticity is calculated as a curvature of the market share constraint, so this is interpreted
as a perceived demand elasticity of product j for firm f . Firm f takes into account the value of this
elasticity when it maximizes profits under the market share constraint.

Next, I show that this elasticity equals the elasticity of Qf/Q with respect to Pf/P , which is an
analog to the definition of the intra-sectoral elasticity proposed in d’Aspremont, Dos Santos Ferreira,
and Gérard-Varet (2007). The difference is that I use Qf instead of qj because the market share
constraint is formulated for the firm-level share of multiproduct firms, so if firm f produces only one
product, both definitions coincide.
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−
d(Qf/Q)

d(Pf/P )

Pf/P

Qf/Q
= −

∂Hf

∂pj

Pf
QP(

∂Pf
∂pj

1

∂P
− ∂P

∂pj

Pf
P 2

)
Qf
Q

= −

∂ lnHf

∂ ln pj
∂ lnPf
∂ ln pj

− ∂ lnP

∂ ln pj

= −

∂ lnHf

∂ ln pj
∂ lnQf
∂ ln qj

− ∂ lnQ

∂ ln qj

= ηj

where the first equality follows a differentiation with respect to pj , and the second equality follows by
arranging the terms. The third equality follows from equation (23).

Next, I show how to derive equation (8). By differentiating the Hicksian demand given in equation
(22) and expressing the terms in elasticity forms, we have:

∂ lnHf

∂ ln pj
=
∂ lnSf |in

∂ ln pj
+
∂ lnP

∂ ln pj
−
∂ lnPf
∂ ln pj

= − 1

Sf |in

I∑
i

αisij|in(1− Sif |in)− (sj|f − sj|in)

By substituting this into equation (24) and using equation (23), we have:

ηj =
1

Sf |in(sj|f − sj|in)

I∑
i=1

αisij|in(1− Sif |in) + 1 for j ∈ Ωf

In the case of a simple logit without any random coefficients, this elasticity is simplified to:

ηj = α+ 1 (25)

A.2.2 Inter-sectoral elasticity of substitution

By totally differentiating the market size constraint with equality and setting dpk = dqk = 0 for k 6= j,
we have:

∂Q

∂qj
dqj =

∂D

∂pj
dpj for j ∈ Ωf

By arranging the terms and dividing both sides by pj/qj , we have the inter-sectoral elasticity of
substitution of product j.

σj ≡ −
d ln qj
d ln pj

∣∣∣
Q(q)=D(p,Y )

= −

∂ lnD

∂ ln pj
∂ lnQ

∂ ln qj

for j ∈ Ωf (26)

This elasticity is calculated as a curvature of the market size constraint, so firm f takes into
account the value of this perceived demand elasticity when it maximizes profits under the market size
constraint. Also, this elasticity coincides with the inter-sectoral elasticity of substitution defined in
d’Aspremont, Dos Santos Ferreira, and Gérard-Varet (2007).

Next, I show how to derive equation (9). By differentiating the Marshallian demand function given
in equation (19) with respect to pj and expressing the terms in elasticity forms, we have:
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∂ lnD

∂ ln pj
=
∂ lnSin
∂ ln pj

− ∂ lnP

∂ ln pj

= − 1

1− s0

I∑
i

αisijsi0 − sj|in

By substituting this into equation (26) and using equation (23), we have:

σj =
1

(1− s0)sj|in

N∑
i=1

αisijsi0 + 1 (27)

In the case of a simple logit without any random coefficients, this elasticity is simplified to:

σj = αs0 + 1 (28)

A.3 Solving first-order conditions of profit maximization problem

I show how to solve the profit maximization problem of firm f given in (7). The Lagrangian for firm
f is:

Lf =
∑
j∈Ωf

(pj − cj)qj − FCf + λf

(
1−

Qf (qf )

Hf (pf ,p−f , Q(qf , q−f ))

)
+ vf

(
1−

Q(qf , q−f )

D(pf ,p−f , Y )

)

By differentiating this Lagrangian with respect to (pj) and (qj) for j ∈ Ωf , we have:

(pj) qj + λf

(
Qf
H2
f

∂Hf

∂pj

)
+ vf

(
Q

D2

∂D

∂pj

)
= 0 for j ∈ Ωf

(qj) pj − cj + λf

(
− 1

Hf

∂Qf
∂qj

+
Qf
H2
f

∂Hf

∂Q

∂Q

∂qj

)
+ vf

(
− 1

D

∂Q

∂qj

)
= 0 for j ∈ Ωf

Arranging the terms, we have:

(pj) qj =
λf
pj

(
−
∂ lnHf

∂ ln pj

)
+
vf
pj

(
−∂ lnD

∂ ln pj

)
for j ∈ Ωf (29)

(qj) pj − cj =
λf
qj

(
∂ lnQf
∂ ln qj

−
∂ lnHf

∂ lnQ

∂ lnQ

∂ ln qj

)
+
vf
qj

∂ lnQ

∂ ln qj
for j ∈ Ωf (30)

Dividing equation (30) by equation (29) and arranging the terms, we have:

pj − cj
pj

=
λf (sj|f − sj|in) + vfsj|in

λf (−
∂ lnHf

∂ ln pj
) + vf (−∂ lnD

∂ ln pj
)

for j ∈ Ωf

where I use
∂ lnQf
∂ ln qj

= sj|f , ∂ lnQ
∂ ln qj

= sj|in, and
∂ lnHf
∂ lnQ = 1, all of which hold due to the homothetic

preference.
Finally, defining θf = λf/(λf + vf ) and arranging the terms, the equilibrium relative markup is

derived:

µ∗j =
pj − cj
pj

=
θf (1− Sf |in) + (1− θf )Sf |in

θf (1− Sf |in)ηj + (1− θf )Sf |inσj
for j ∈ Ωf (31)

where ηj and σj are the intra- and inter- sectoral elasticities of substitution of product j.

38



Appendix B Relationship with benchmark competition models

I show how the specific values of θf generate the equilibrium markups that correspond to ones generated
from benchmark models. I use a discrete/continuous logit demand without random coefficients because
it allows us to obtain closed-form derivations.

The demand function of product j is given as:

qj = sj
Y

pj
=

exp(vj − α log pj)

1 +
∑J

k=1 exp(vk − α log pk)

Y

pj

where vj is a product-specific valuation.

B.1 Price competition

In the case of multiproduct Bertrand price competition, a profit maximization problem of firm f is:

max
pf

πf =
∑
j∈Ωf

(pj − cj)qj(p, Y )

The first-order condition for product j produced by firm f is given by:

∂πf
∂pj

= qj +
∑
k∈Ωf

(pk − ck)
∂qk
∂pj

= 0

The derivatives of the demand function are given by:

∂qj
∂pj

=
∂sj
∂pj

Y

pj
− sjY

p2
j

=

(
−αsj

pj
+ α

s2
j

pj

)
Y

pj
− sjY

p2
j

= α
s2
jY

p2
j

− (α+ 1)
sjY

p2
j

for j ∈ Ωf

∂qk
∂pj

=
∂sk
∂pj

Y

pj
= α

sjskY

pjpk
for j, k ∈ Ωf k 6= j

Substituting the derivatives into the first-order condition, we have:

qj + α
∑
k∈Ωf

(pk − ck)
pk

skqj − (α+ 1)
(pj − cj)

pj
qj = 0

As relative markups (pj − cj)/pj take the same values under the discrete/continuous logit (see
Konovalov and Sándor (2010) and Nocke and Schutz (2018)), I set µ = (pj − cj)/pj for all j. Rear-
ranging the terms, we have:

µ =
pj − cj
pj

=
1

(1− Sf )α+ 1
(32)

where Sf =
∑

k∈Ωf
sk is the market share of firm f .

This is the equilibrium markup under multiproduct price competition. The markups are higher
for firms with higher market shares because multiproduct firms internalize their own products.

Next, I derive the equilibrium markup under the proposed model when θf = 0.5, which is given
as:

pj − cj
pj

=
1

(1− Sf |1)ηj + Sf |1σj

Substituting ηj = α+ 1 and σj = αs0 + 1 from equations (25) and (28), we have:

pj − cj
pj

=
1

(1− Sf |1)(α+ 1) + Sf |1(αs0 + 1)

=
1

(1− Sf |1 + Sf |1(1− S1))α+ 1
=

1

(1− Sf )α+ 1
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This markup equation is the same as equation (32). This result indicates that the markup under
the proposed model with θf = 0.5 takes the same value as the multiproduct price competition model.

B.2 Quantity competition

In the case of multiproduct Cournot quantity competition, a profit maximization problem of firm f is:

max
qf

πf =
∑
j∈Ωf

(pj(q, Y )− cj)qj

where pj(q, Y ) = D−1(Q(q), Y )
∂Q

∂qj
is the inverse demand function of product j. This inverse de-

mand function is obtained from the first-order condition of the expenditure minimization problem and
substitute P = D−1(Q(q), Y ).

The first-order condition for product j produced by firm f is given by:

∂πf
∂qj

= pj − cj +
∑
k∈Ωf

∂pk
∂qj

qk = 0

The derivatives of the inverse demand function are given by:

∂pj
∂qk

=
∂D−1

∂Q

∂Q

∂qj

∂Q

∂qk
+D−1 ∂

2Q

∂qjqk
for j, k ∈ Ωf

Substituting the derivatives into the first-order condition, we have:

0 = pj − cj +
∑
k∈Ωf

(
∂D−1

∂Q

∂Q

∂qj

∂Q

∂qk
+D−1 ∂

2Q

∂qjqk

)
qk

pj − cj = −∂D
−1

∂Q

∂Q

∂qj

∑
k∈Ωf

∂Q

∂qk
qk −D−1

∑
k∈Ωf

∂2Q

∂qjqk
qk

pj − cj
pj

= −∂ lnD−1

∂ lnQ

∑
k∈Ωf

∂ lnQ

∂ ln qk
− 1

∂Q

∂qj

∑
k∈Ωf

∂2Q

∂qjqk
qk (33)

The first term in equation (33) is written by:

−∂ lnD−1

∂ lnQ

∑
k∈Ωf

∂ lnQ

∂ ln qk
=

1
∂ lnD
∂ lnP

∑
k∈Ωf

sk|1 =
Sf |1

αs0 + 1
(34)

For the second term in equation (33), I recover the direct utility function corresponding to the
expenditure function in equation (18) by exploiting the duality between the expenditure function and
the direct utility function.

Q(q) =

 J∑
j=1

Cjq
α
α+1

j

α+1
α

where Cj is the product-specific constant of product j.
I calculate the derivatives of the utility function with respect to qj as:

∂Q

∂qj
= Cjq

−1
α+1

j

 J∑
j=1

Cjq
α
α+1

j

 1
α
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∂2Q

∂q2
j

= − Cj
α+ 1

q
−α−2
α+1

j

 J∑
j=1

Cjq
α
α+1

j

 1
α

+
C2
j

α+ 1
q
−2
α+1

j

 J∑
j=1

Cjq
α
α+1

j

 1−α
α

∂2Q

∂qjqk
=
CjCk
α+ 1

q
−1
α+1

j q
−1
α+1

k

 J∑
j=1

Cjq
α
α+1

j

 1−α
α

for k 6= j

Substituting these derivatices into the second term in equation (33), we have:

− 1

∂Q

∂qj

∑
k∈Ωf

∂2Q

∂qjqk
qk =

Cj
α+ 1

q
−1
α+1

j

(∑J
j=1Cjq

α
α+1

j

) 1
α −

∑
k∈Ωf

(
CjCk
α+ 1

q
−1
α+1

j q
−1
α+1

k

(∑J
j=1Cjq

α
α+1

j

) 1−α
α
qk

)

Cjq
−1
α+1

j

(∑J
j=1Cjq

α
α+1

j

) 1
α

=
1

α+ 1
− 1

α+ 1

∑
k∈Ωf

Ckq
−1
α+1

k∑J
j=1Cjq

α
α+1

j

qk

=
1

α+ 1
− 1

α+ 1

∑
k∈Ωf

sk|in =
1− Sf |in
α+ 1

(35)

Substituting equations (34) and (35) into equation (33), we have the equilibrium markup under
multiproduct quantity competition.

pj − cj
pj

=
Sf |in

αs0 + 1
+

1− Sf |in
α+ 1

(36)

On the other hand, the equilibrium markup under the proposed model is given as follows when
θf = 1/(1 + ηj/σj).

pj − cj
pj

=
1− Sf |in

ηj
+
Sf |in

σj

Substituting ηj = α + 1 and σj = αs0 + 1 from equations (25) and (28) generates the same
markup equation given in (36). This result indicates that the markup under the proposed model with
θf = 1/(1 + ηj/σj) takes the same value as the multiproduct quantity competition model.

B.3 Collusion

In the case of collusion, firms maximize joint profits of all firms. A profit maximization problem of
firm f is given as:16

max
pf

πf =
J∑
j=1

(pj − cj)qj(p, Y )

The first-order condition for product j produced by firm f is given by:

∂πf
∂pj

= qj +

J∑
k=1

(pk − ck)
∂qk
∂pj

= 0

Firms internalize all products in the market when maximizing their profits. Substituting the
derivatives of the demand function into this equation, we have:

16. It is also possible to formulate the problem using the inverse demand function and treat quantities as choice
variables. The solutions in both formulations end up with the same collusive equilibrium.
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qj + α

J∑
k=1

(pk − ck)
pk

skqj − (α+ 1)
(pj − cj)

pj
qj = 0

Using the same markup property under the logit, we have:

pj − cj
pj

=
1

α+ 1− αSin
=

1

αs0 + 1
(37)

On the other hand, the equilibrium markup under the proposed model is given as follows when
θf = 0.

pj − cj
pj

=
1

σj
=

1

αs0 + 1

This result indicates that the markup under the proposed model with θf = 0 takes the same value
as one when firms maximize joint profits.

B.4 Monopolistic competition

In the proposed model, the optimal markup with θf = 1 is given by:

pj − cj
pj

=
1

ηj
=

1

α+ 1
(38)

I show that this markup equals one when firms do not internalize any other products in the market.
The first-order condition for product j produced by firm f is given by

∂πf
∂pj

= qj +

J∑
k=1

(pk − ck)
∂qk
∂pj

= qj + (pj − cj)
∂qj
∂pj

= 0

Rearranging the terms, we have:

pj − cj
pj

= − 1
∂ ln qj
∂ ln pj

This equation indicates that the markup under monopolistic competition is a reciprocal of the own
price elasticity. Here, this own price elasticity needs to be calculated by not taking into account its
impact of price change on the denominator of the choice probability (see Nocke and Schutz (2018)).
A simple calculation generates the following elasticity.

∂ ln qj
∂ ln pj

=

(
−αsjY

p2
j

− sjY

p2
j

)
pj
qj

= α+ 1

Rearranging the terms, we have:

pj − cj
pj

=
1

α+ 1
(39)

Combining these facts indicates the equivalency between the proposed model with θf = 1 and the
monopolistic competition model.

42



Appendix C Illustration of the supply model in a simple case

I illustrate a simple example of the proposed supply model. There are four products, two firms
f1 = {1, 2}, f2 = {3, 4} selling two products each. There is an outside option (j = 0).

I use a discrete/continuous logit without any random coefficients. The demand function of product
j is given as:

qj = sj
Y

pj
=

exp(vj − α log pj)

1 +
∑4

k=1 exp(vk − α log pk)

Y

pj

I suppose that we observe Y = 1, s = (0.2, 0.2, 0.2, 0.2)′, p = (1, 1, 1, 1)′, q = (0.2, 0.2, 0.2, 0.2)′. I

also assume α = 5. With this setting, we can calculate that
∂qj
∂pk

= −1 if j = k, 0.2 otherwise.
The profit maximization problems of the two firms are given by :

max
p1,p2,q1,q2

π1 = (p1 − c1)q1 + (p2 − c2)q2

subject to Q1(q1, q2) ≤ H1(p, Q(q))

and Q(q) ≤ D(p, Y )

max
p3,p4,q3,q4

π2 = (p3 − c3)q3 + (p4 − c4)q4

subject to Q2(q3, q4) ≤ H2(p, Q(q))

and Q(q) ≤ D(p, Y )

Solving the first-order conditions, we have the following equilibrium markups (see equation (10)).

pj − cj
pj

=
θ1(1− S1|in) + (1− θ1)S1|in

θ1(1− S1|in)ηj + (1− θ1)S1|inσj
for j = 1, 2

pj − cj
pj

=
θ2(1− S2|in) + (1− θ2)S2|in

θ2(1− S2|in)ηj + (1− θ2)S2|inσj
for j = 3, 4

From equations (25) and (28), the intra- and inter-sectoral elasticities of substitution (ηj , σj) are
calculated as ηj = α + 1 = 6 and σj = αs0 + 1 = 2 for all j. Also, the firm-level shares within the
inside products are S1|1 = S2|1 = (0.2 ∗ 2)/(0.2 ∗ 4) = 0.5.

The equilibrium markups are given as follows depending on the values of θf .

p− c
p

=


0.5 (= 1

σj
) if θf = 0 (Collusion),

0.33 (=
1−Sf |1
ηj

+
Sf |1
σj

) if θf = 0.25 (= 1
1+ηj/σj

) (Quantity competition),

0.25 (= 1
(1−Sf |1)ηj+Sf |1σj

) if θf = 0.5 (Price competition),

0.17 (= 1
ηj

) if θf = 1 (Monopolistic competition).
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