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1 Abstract

Bike sharing systems (BSS) have become prominent in the majority of large U.S.

cities as another transportation option. I quantify the effects of an increase in the usership

of these systems on traffic accidents, injuries, and fatalities and discuss the mechanisms

through which these effects occur. For my empirical analysis, I utilize daily data from 8

different U.S. cities between 2014 and 2022 of BSS ridership and traffic accidents. The

primary identification strategy uses a negative binomial model with average wind speed as

an instrument for BSS ridership. I find that a 1 standard deviation increase in BSS ridership

increases accidents by 11 percent, injuries by 24.3 percent, and fatalities by 96 percent.

Additional model specifications suggest factors like bike infrastructure play the biggest role

in overall safety.

2 Introduction

Bike sharing systems (BSS) have quickly emerged in the United States and become

popular as a environmentally-friendly, low-cost form of transportation that could help reduce

the use of motor vehicles and subsequently lower emissions and reduce congestion in crowded

cities. Increased cycling is also often touted as a way to increase safety. A 2012 press release

from New York City’s Department of Transportation cited multiple statistics regarding how

increased cycling does not increase serious bike crashes and that it leads to safer conditions

for pedestrians (New York City Department of Transportation, 2013). However, New York

implemented its BSS the following year and has recently seen a 23 year high in cyclist

fatalities, with the majority coming from electric bike (e-bike) riders (Re, 2024). Statistics

like these call into question the overall benefit of these systems, especially if riders are

uninformed over the true risk of using them.

BSSs work by allowing users to borrow a bicycle for a period of time and pay an

hourly fee or use them through a subscription. The bikes can either be electric or manual,
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but most bikes are e-bikes. In the United States, BSSs can be separated into docked and

dockless systems. A docked BSS requires the user to borrow their bike from a set of docks

and then return in to another one when they are finished. A dockless BSS does not use

docks but instead allows users to find bikes using an mobile app. Once finished with their

trip, the bike can be left almost anywhere so long as it complies with local ordinances.

The first large BSSs were implemented in the United States in the early 2010’s

(Bureau of Transportation Statistics, 2022), with the first systems being docked only. The

number of systems grew quickly in the following years, and the only year that experienced

a decline was 2020 due to the COVID-19 pandemic. In 2017, the first dockless BSS was

opened, and this system has been the primary driver of new BSSs ever since. However,

many older systems are still around in larger cities that maintain the docked systems. As of

2022, there are 61 docked BSSs and 345 dockless BSSs serving over 155 cities in the United

States (Bureau of Transportation Statistics, 2022).

Although the e-bikes used in many BSSs utilize a battery, all of them are pedal-

assisted, meaning the user must still pedal to operate the bike. Therefore, using e-bikes from

a BSS can still benefit the user through many of the documented health benefits of increased

physical activity, such as reduced risk of mortality (Lee et al., 1995) and reduced risk of

chronic diseases including cardiovascular disease, diabetes, cancer, hypertension, obesity, and

depression (Warburton et al., 2006). Encouraging individuals to substitute away from driving

gasoline-powered vehicles additionally reduced local air pollution, which has positive health

effects in the form of reduced risk of cardiovascular disease and reduced risk of premature

births (Margaryan, 2021; Currie and Walker, 2011). However, given that biking is an overall

riskier form of transportation than driving, walking, and taking public transportation (Beck

et al., 2007), these health benefits may be offset by a mortality risk increase.

One of the biggest appeals of BSSs is their ease of use. While this is beneficial in

terms of access and time savings, it means that users may operate the bikes unprepared. This

is supported by surveys that find BSS users are far less likely to wear a helmet (Fishman

2



et al., 2014). Since helmets are useful in preventing and lessening bike injuries (Høye, 2018),

BSS users are already riskier than traditional cyclists. Furthermore, injuries sustained on

e-bikes are more severe and utilize more hospital resources than on traditional bikes — faster

speeds cause other drivers to miscalculate the e-bikes position and also leads to higher impact

collisions in the cases of an accident (Siman-Tov et al., 2018).

While the introduction of a BSS into a city provides an opportunity to reduce the

negative effects of more traffic like pollution and congestion, the majority of people are using

BSSs in place of walking, buses, or commuter rails (Fishman et al., 2013). Estimates for the

fraction of people using a BSS in place of a car are typically between 2 and 10 percent, with

the highest estimate at just over 20 percent (Fishman et al., 2013). Though still nonzero,

this means that the majority of BSS users were those who were not initially contributing

to pollution and congestion in the first place. Trips that would have been made by public

transit, a mode of transportation orders of magnitude safer than cycling, make up about

34 percent of BSS trips (Fishman et al., 2013; Department of Economic and Social Affairs,

2011). In this project, I analyze the impact of BSS usage on traffic accidents, injuries, and

fatalities. I do this by utilizing the variation in BSS usage across time and cities to determine

a causal effect on traffic accidents.

3 Literature Review

3.1 Bicycle Use and Safety

Cyclists have the highest injury and fatality rate per trip compared to pedestrians,

drivers, and public transit users (Beck et al., 2007). However, these rates are based on a

nationally representative sample which does not reflect the infrastructure and other char-

acteristics of an urban environment where bike sharing is most common. Cycling is far

more prevalent in urban settings, especially for commuting (Tribby and Tharp, 2019), and

infrastructure and travel distance play a large role in choosing to bike (Parkin et al., 2008;
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Pucher and Buehler, 2006; Pucher, 2001). Infrastructure also improves cycling safety, as

cycle tracks, dedicated bike lanes, and bike-specific pathways all decrease cyclists’ risk of

being in an accident. (Ling et al., 2020; Harris et al., 2013; Teschke et al., 2012).

Cities with higher rates of cycling and walking also see lower rates of cyclists and

pedestrians being involved in accidents. This is referred to as the “safety in numbers” effect

in the literature. Studies focused solely on the how mode share is related to accident rates

have affirmed that this effect does occur (Lee et al., 2019; Elvik and Bjørnskau, 2017). This

effect extends to motorists as well — higher rates of cycling and walking reduce the chance

of a motorist colliding with cyclists or pedestrians (Jacobsen, 2003). This suggests that

it may be the prevalence of cyclists and pedestrians that encourages more caution among

motorists, as they are interacting more often. However, evidence suggests most if not all of

the correlation can be explained through city-level infrastructure (Marshall and Ferenchak,

2019), as individuals are more likely to walk or ride a bicycle if they feel more safe to do so.

Many of the determinants of bike use can be applied to bike sharing. Bike infras-

tructure is also an important predictor of BSS usage, as people are more likely to utilize

bike sharing when dedicated lanes are prevalent (Fishman et al., 2013). However, evidence

suggests that those using bike sharing are of a different profile than cyclists using private,

manual bikes. Their ease of access allows people to use them unprepared and are well-suited

for tourists who may not have their own bike or car. People who use BSSs are less likely

to wear a helmet even when helmets are encouraged, compared to private, manual bikes

(Haustein and Møller, 2016). Furthermore, the majority of BSSs utilize e-bikes which leads

to users riding faster than normal cyclists. The speed of e-bikes increases accident rates and

severity since motorists will incorrectly predict how fast they are going, assuming the speed

is lower than it actually is (Siman-Tov et al., 2018).
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3.2 Overall Traffic Safety

The determinants of traffic accidents and safety are complex but well-studied across

a variety of fields. The many different treatment effects that have been looked at in the

past provide models and methodologies for any research looking to determine a causal effect

(Wright and Dorilas, 2022; Raynor et al., 2021; Li, 2019; Anderson, 2008). This paper will

draw from these studies and build up upon the broader literature of road safety.

Weather is a large factor that impacts overall traffic safety. Precipitation, especially

that in the form of severe snowstorms, plays the biggest role in causing accidents (Maze et al.,

2006; Chang and Chen, 2005). This effect is also prevalent among pedestrians (Graham

and Glaister, 2003) and cyclists (Kamel and Sayed, 2021) and can likely be explained by

rain and snowfall reducing visibility and increasing reaction time and stopping distance for

motorists. Precipitation also has a large impact on the demand for trips with rain and

snowfall decreasing the overall demand for travel (Maze et al., 2006). Temperature is often

associated with weather events like snow or rain, so disentangling their effects is difficult

and has not been studied extensively. Several studies have found a negative impact of

temperature on accidents (Hermans et al., 2006; Scott, 1986), though accident increases may

be better explained through deviations from the monthly average temperature or extreme

highs and lows (Malyshkina et al., 2009; Brijs et al., 2008). Wind is another weather event

examined in the context of traffic safety, though whether it increases accidents is debated.

Evidence suggests that extreme gusts may increase accidents (Hermans et al., 2006), but

little research exists to support that lower wind speeds have a significant effect. Wind also

has little effect on the demand for vehicle travel, but does decrease the demand for trips

taken with a bicycle (Thomas et al., 2013). This follows from intuition, as motorists are far

more protected from the wind than cyclists, and wind makes cycling more difficult.

Congestion is another contributor to traffic safety that impacts accidents, especially

as policies that impact transportation mode share will directly affect it. Congestion and

its relationship with accidents, accident rates, injuries, and fatalities has been studied in a
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variety of environments. Within large cities, reducing congestion has been shown to reduce

accidents and accident rates (González et al., 2021; Green et al., 2016). The effect on freeways

is less certain, though other studies suggest that the relationship between congestion and

accidents is still positive or at least nonnegative (Wang et al., 2009; Chang and Xiang, 2003).

Public transit is another factor, that while relieving congestion, also shifts people

away from all other modes of transportation. City-wide public transit has been shown to

relieve congestion while also reducing the number of people both driving and cycling (Adler

and van Ommeren, 2016). In regards to safety, public transit decreases accidents and injuries

(Lichtman-Sadot, 2019; Bauernschuster et al., 2017). It is important to note however, that

most of these studies rely on shocks to public transportation, like citywide implementation

or strikes. It is uncertain if these effects would persist at the same level in the long run.

3.3 Direct and Indirect Impacts of Bike Sharing Systems

The majority of the literature on the impacts of BSSs has focused on their externali-

ties in the form of air pollution. Switching from driving a car to riding a bike has the potential

to reduce large amounts of gasoline consumption (Zhang and Mi, 2018) and therefore reduce

local air pollution. However, e-bikes often export their emissions through production and

maintenance costs to the extent where their environmental benefit is at least partially offset

(Zhang et al., 2022; Ding et al., 2021), especially if they are being manufactured and charged

using electricity produced through burning fossil fuels.

Biking and its effect on health has been well studied, both in its higher risk of mortal-

ity compared to other forms of transportation (Ulak et al., 2018; Beck et al., 2007), especially

for e-bikes (Siman-Tov et al., 2018), as well as its use as a form of physical activity that

reduces mortality risk (Deenihan and Caulfield, 2014). Additional studies have considered

both the costs and benefits of cycling as a form of transportation, suggesting an ambiguous

effect to slight decrease in mortality risk (Doorley et al., 2017). However, with e-bikes re-

quiring less input from riders, this mortality risk reduction may not be as prominent or exist
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altogether. Little research has been conducted regarding the health impacts of bike shar-

ing, however by combining transportation mode shifts with BSS use, pollution, and accident

data, it is predicted that bike sharing reduces mortality risk (Clockston and Rojas-Rueda,

2021).

This paper adds to this literature by analyzing the effects of bike sharing on injury

and mortality risk. It provides additional insight into the effects caused by the usage of bike

sharing systems, as health impacts are understudied. I will be improving upon the current

health externality research by making fewer assumptions about the risks associated with BSS

users. Instead of assuming BSS cyclists have the same mortality rate as manual cyclists, my

analysis allows for them to differ. It will also be conducted using a panel of multiple cities

allowing for a wider variety infrastructure and demographics to improve external validity of

the results.

3.4 Optimal Design of Bike Sharing Systems

Bike Sharing Systems are still a relatively new development in American cities and

are in the process of being properly integrated. Although surveys have suggested the BSSs

are causing people to substitute away from buses and commuter rails (Fishman et al., 2014),

designing and placing BSSs correctly can encourage them to be used alongside public trans-

portation instead of in place of it, which helps improve social welfare (Shr et al., 2023).

Studies have also looked at the optimal service level and placement of BSSs finding

that docked BSSs have the potential to be placed more optimally to induce higher usership

numbers (Mix et al., 2022), and that dockless systems are far better at encouraging demand

for bike sharing (Soriguera and Jiménez-Meroño, 2020). BSSs are predicted to have high

enough public benefits that systems should be subsidized by the government, so the optimal

level of service is provided (Jara-Dı́az et al., 2022). However, if additional costs like mortality

risk are included, this may not still be the case.

The results from this paper will contribute a better understanding of the total costs
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involved with bike sharing systems. Currently, BSS design has been studied without the

full idea of all the health costs associated with their use which makes pricing difficult to

accurately determine.

4 Theoretical Model

To understand and predict how BSS ridership affects accidents, it is important to

consider all of the channels through which it may do so. A higher level of BSS ridership

indicates one of two things: (1) A trip that wouldn’t have happened is now occurring or (2) A

trip that would have happened through another form of transportation is now occurring using

a BSS. In the case of (1), this strictly means there are more cyclists on the road, without the

other transportation modes being affected. This would increase accidents through increased

exposure but could decrease accidents through the safety in numbers effect or by increasing

driver awareness. Furthermore, it would affect congestion, though the literature is divided

on if this would increase or decrease accidents. In the case of (2), when people change their

mode of transportation to cycling using a BSS, there are fewer motorists and pedestrians,

which decreases accidents, but more cyclists increases accidents. These effects and their

impact on overall accidents, an increase (+), decrease (-), or ambiguous (?), are shown in

figure (1).

Which of these effects dominates will also determine how a change in accidents trans-

lates to a change in injuries and fatalities. If the severity of accidents remains unchanged, the

change in injuries and fatalities will be the same as the change in accidents. However, it is

reasonable to believe that a change in BSS ridership will also affect the severity of accidents

occurring. Accidents are likely to be less severe if there is a noticeable impact on driver

awareness or safety in numbers. It is also possible that more congestion decreases accident

severity, as accidents will happen at lower speeds. On the other hand, severity may increase

if there are more car to cyclist accidents.
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5 Data

I analyze daily bike sharing usage and traffic accidents from 2014-2022 across 8 U.S.

cities: Austin, Texas; Boston, Massachusetts; Chicago, Illinois; Los Angeles, California; New

York City, New York; San Francisco, California; San Antonio, Texas, and Washington, DC.

These cities were chosen due to their populations, length of time of uninterrupted service of

bike sharing, and availability of data.

5.1 Traffic Accidents

The data for traffic accidents was obtained individually from state departments of

transportation. This data includes information on every person in an accident involving an

injury, fatality, or $1,000 in property damage ($1,500 in Chicago, and reporting an accident

involving only property damage is not required in Washington, DC unless a vehicle must be

towed). However, accidents are still often reported for those with less property damage, as

they are often helpful for insurance claims. Within this data is information on each reported

accident, the date and location it occurred, and the individuals involved including their type

(driver, passenger, cyclist, pedestrian, etc.) and the level of injury they sustained. Accidents

by city from 2014-2022 are shown in figure (2).

From this data, I calculate daily counts of accidents, people involved in accidents,

injuries and fatalities. I further break down these numbers by separating them into person

types: motorist, cyclist, or pedestrian. These 3 categories make up over 99 percent of people

in accidents. Average daily accident information by city is summarized in table (1).

5.2 Bike Sharing Usage

I obtain individual trip level bike sharing data from each of the 8 systems involved

in this study. The structure of these BSSs ranges from fully private to a publicly owned

but privately operated partnership. Those with a public-private partnership provide the
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data publicly while the fully private systems required a special request. This trip level data

includes the date of the trip, the time and station the trip originated at, and the time and

station the trip finished at. Each trip was capped at 3 hours to account for observations

where bikes were likely not returned to a station after the ride was finished. Trip duration

was then aggregated on a daily level to determine the daily ridership by city.

The date range included is 2014-2022, though 2 systems did not begin operation

until later — Los Angeles in 2016 and San Francisco in 2017. Additionally, Boston did not

begin operating year-round until 2018. Because of this, I omit all observations for which

ridership is zero to only compare observations for which there is the option of biking using

a BSS. Across all 8 cities, the average ridership was 2,915 hours per day with a standard

deviation of 5,275 hours per day. A breakdown of average daily ridership by city is shown

in Table (2).

5.3 Additional Contributors to Accidents

To account for additional contributors to accidents, I include a variety of weather

factors. These factors are total precipitation, average wind speed, average cooling degrees

(degrees above 65 Fahrenheit) and average heating degrees (degrees below 65 Fahrenheit).

I acquired temperature and precipitation data from the PRISM Climate Group and wind

speeds from the National Oceanic and Atmospheric Administration (NOAA). Accidents can

be affected by factors that increase the number of trips taken or by increasing the accident

rate of existing trips. These variables are commonly used in the traffic safety literature and

have been shown to affect total accidents in at least one of the two aforementioned ways. I

also control for demographic differences in observations by obtaining annual, city level data

from the American Community Survey (ACS). I include median household income, median

age, percentage of the population male, and percentage of the population with a college

degree.
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6 Methodology

I estimate the effect of BSS ridership on traffic accidents by regressing daily accidents

on hours of ridership. The primary specification is a standard OLS model that controls

for time and city differences in addition to other contributors to accident numbers. The

results from this specification help to assess the validity of utilizing an instrumental variable

specification to address potential endogeneity concerns. These results are also compared

with that of a Poisson model, which is included due to the nature of the data being counts

as well as helping address the large number of zeros in the dependent variable.

6.1 Regression Specification

I regress daily accident numbers on hours of BSS ridership, using a transformation

of accidents to account for nonlinearity. Typically, nonlinear data is transformed with a

logarithmic transformation, however, the large number of zeros makes this difficult. While a

commonly used technique of dealing with zeros would be to instead transform the dependent

variable Y, as ln(Y + 1), this can bias the results. Therefore, I transform both variables

using the inverse hyperbolic sine function (sinh−1). This transformation is chosen due to it

its results being interpreted the same as those of a log transform while also being able to

deal with zeros. The inverse hyperbolic sine function, which transforms a random variable,

x, into a new, transformed variable, x̃ is given by

x̃ = sinh−1(x) = ln(x+
√
x2 + 1). (1)

Except for very small values of x, sinh−1 is approximately equal to ln(2x) or ln(2) + ln(x)

allowing for the same interpretation as that of a log transformed variable.

The primary regression specification for this analysis is a standard ordinary least

squares (OLS) model which is given by

sinh−1(Yit) = β1Xit + β2θit + λi + δt + εit (2)
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where Yit represents the number of accidents in city i in year t, and Xit is the number of

hours of bike ridership. The coefficient of interest in this model is β1, which is the percent

change in accidents given a 1,000 hour increase in BSS ridership. Throughout, the regressions

include weather and demographic controls θit, city fixed effects λi, and date fixed effects δt.

Of particular concern is wind speed, which is initially included as a weather control, but also

included to assess its validity as an instrument for BSS ridership.

6.2 Instrumental Variable: Average Wind Speed

Wind speed is often considered as a factor that may impact traffic safety, though the

literature is mixed over the significance of its effect. Certain results suggest there may be

an impact specifically from high speed gusts (Hermans et al., 2006) , though little evidence

exists to suggest there is an effect on traffic safety, particularly in cities where this analysis

takes place. Therefore, it has potential as an instrument due to its well documented effect

on discouraging cycling (Thomas et al., 2013).

I consider an instrumental variable specification due to concerns over endogeneity

that may arise from selection on non-random factors that affect overall transportation pat-

terns. Accidents are likely to be higher on days when more people are travelling which will

correspond with higher BSS ridership. While the OLS specification attempts to control for

all of these variables that impact overall travel, any omitted variables will lead to a bias in

the estimates. Therefore, by utilizing an instrument that is a good predictor of BSS ridership

while not having a direct impact on accidents, I will be able to eliminate any bias introduced

by omitted variables.

In this analysis, I utilize the variation in average wind speed as an instrument for

BSS ridership. Wind speed has a direct effect on BSS ridership by making it more difficult

and less enjoyable leading to fewer total hours in days with higher wind speeds. I show that

this line of reasoning plays out in practice by estimating the first stage, which is shown by

Xit = π1Wit + π2ϕit + λi + δt + νit (3)
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where Wit represents the average wind speed, ϕit includes all the controls in θit except wind

speed, and λi and δt are the same fixed effects as those from (2).

In order for average wind speed to be a valid instrument, it must also be independent

of accidents except through its effect on BSS ridership after controlling for covariates that

also impact accidents as well as city and date fixed effects. This is argued empirically through

the results from the OLS estimations from (2). Additionally, I estimate

sinh−1(Yit) = β1Wit + β2ϕit + λi + δt + ξit, (4)

which is (2) without BSS ridership, to show how wind speed affects accidents by affecting

BSS ridership. From the first stage (3), I calculate the fitted values”Xit = π1Wit + π2ϕit + λi + δt

which are then used to estimate the second stage

sinh−1(Yit) = βIV
”Xit + µϕit + λi + δt + ϵit (5)

where the variables are the same as the previous equations.

6.3 Generalized Linear Model: Negative Binomial

Although accidents can theoretically take on infinite values, a sample of this data

forces it to take on one of a finite number of values. This is the nature of discrete variables

like count data, and modelling it with a standard OLS is more difficult, as the skew of

count data, typically towards 0, means the values are unlikely to be normally distributed.

Although OLS can give similar results if the mean of the data is large enough, data with a

positive skew is better modeled using a discrete probability distribution.

The most popular choice when modelling count data is to use the Poisson distribu-

tion, which expresses the probability of a given number of discrete events. It’s probability

distribution function is categorized by parameter λ and is is given by
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fP (k|λ) = Pr(y = k) = λke−λ

k!
, λ > 0, k = 0, 1, 2, ... (6)

where λ is both the mean and variance of random variable y. However, this characteristic

also means the model is highly restrictive, as with count data the variance often exceeds the

mean in a phenomenon called overdispersion. In this case, it is common to use a negative

binomial (NB) model, which is derived from the Poisson model but models the parameter λ

as a random variable itself. This freedom allows for the negative binomial model to address

the lack of fit of a Poisson model when there is overdispersion.

In this analysis, I consider the use of a Poisson model and test for overdispersion.

In the case the data is overdispersed, I instead use a negative binomial model and test for

its goodness of fit to best model the data. With large enough means, these models will

provide similar results to OLS, as both Poisson and negative binomial distributions converge

to a normal distribution as the mean grows unbounded. Therefore, OLS is likely to provide

similar results to these count models for variables like accidents and injuries, which have

sample means of about 90 and 69 respectively. On the other hand, it likely to be a poor fit

for more skewed variables like fatalities, which has a mean of 0.25.

7 Results

7.1 Baseline Specification

The results of the baseline specification are given in column 1 of table (3). They

suggest that a 1,000 hour per day increase in BSS ridership will increase all traffic accidents

by 1.4 percent. Given the standard deviation of ridership is 5,275 hours, an increase in

ridership by one standard deviation increases traffic accidents by about 7.4 percent. While

the majority of the controls show significant effects on accident numbers, average wind speed

is not a significant factor in determining accidents. However, column 3 indicates that it is

significant when removing BSS ridership, suggesting average wind speed could have an effect

through its impact on cycling — an important note for the IV specification. Column 2 uses
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a very similar specification to the baseline, however, it uses date level fixed effects instead of

year, month, day, and day of week. The estimated coefficient is very similar to the baseline

model’s. While date level fixed effects are more precise, the estimation from column 2 shows

that there is little loss in precision by using the time fixed effects from the baseline model.

Therefore, I use these for future specifications due to the stark decrease in computing power

necessary for estimating the models.

7.2 IV

To assess the validity of average wind speed as an instrument, it must be both (1)

relevant and (2) satisfy the exclusion restriction. Evidence for relevance is shown by the

results of the first stage, given in table (4). Average wind speed is a significant factor that

impacts BSS ridership — a 1 mile per hour increase in average wind speed decreases BSS

ridership by 93 hours. I argue that the exclusion restriction also holds using evidence from

table (3) and past traffic safety literature. From the baseline specification’s results, average

wind speed does not have a significant effect on accidents. However, when not controlling

for BSS ridership (column 3), the results show that average wind speed does have an effect,

suggesting that its effect is through its impact on BSS ridership. Furthermore, past studies

have not identified wind as a significant factor affecting traffic accidents, as detailed in

previous sections.

The results from the full IV specification are shown in column 1 of table (5). The

estimated coefficient on BSS ridership is higher than the baseline OLS model — increasing

BSS ridership by 1,000 hours increases accidents by 2.1 percent. This suggests a negative

bias of the OLS estimate, which is different than initially expected. I utilized an IV model

to tease out factors that impact overall transportation patterns which would likely increase

both BSS ridership and accidents. However, if this were true, the IV estimate would be

lower than the OLS estimate. Since the opposite is true, any omitted variable(s) either has

a positive covariance with accidents and a negative covariance with BSS ridership or vice
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versa. There are a couple of possible explanations for this. One is that there is something

positively correlated with accidents but negatively correlated with BSS ridership. The most

obvious explanation would be a weather factor that makes travelling more dangerous but

highly discourages cycling. However, all relevant weather variables have been controlled for,

so this is unlikely to be the case. On the other hand, a factor that is negatively correlated

with accidents but positively correlated with BSS ridership would have the same bias. This

criteria suggests something related to safety, such as infrastructure change, specifically that

which makes cycling safer like dedicated lanes or paths. Omitting measures of traffic infras-

tructure that affects bike safety would lead to the effect of BSS ridership on accidents being

underestimated in the OLS model.

7.3 NB and NBIV

Due to the nature of the data as counts, I next estimate a Poisson regression using

the same controls as OLS and IV. However, the results from a dispersion test suggest that the

data is overdispersed: the variance is higher than the mean of the data, which violates the

assumptions of a Poisson model. To account for this, I instead estimate a negative binomial

regression to allow for a differing mean and variance. The results are shown in column 2 of

table (5). Because a negative binomial model is estimated using maximum likelihood, the

results can be interpreted similar to those from the OLS and IV models as a percent increase

in the dependent variable from a 1 unit increase in the independent variable. As expected

due to the large mean of accidents, the estimated coefficient is similar to the OLS estimate; a

1,000 hour increase in BSS ridership increases accidents by about 1.4 percent. Results using

an IV regression with a negative binomial second stage are also shown in column 3 of table

(5) and give similar results to the standard IV model.
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7.4 People, Injuries, and Fatalities

To further analyze the results, I next look at people in accidents, injuries, and fa-

talities in addition to total accidents. I estimate the effect of increased BSS ridership on

these outcomes using a negative binomial IV model due to continued concerns over overdis-

persion and endogeneity. The results are shown in table (6). The estimated coefficients on

BSS ridership indicate that a 1,000 hour increase in usage increases the number of people in

accidents by 3 percent, injuries by 4.6 percent, and fatalities by 18.6 percent.

All three of these estimates are positive, which follows from the previous results on the

effect of BSS ridership on accidents. More accidents likely lead to more people in accidents,

more injuries, and more fatalities, unless the dominating effect from BSS ridership increasing

is a decrease in accident severity, which is possible if BSS ridership affects congestion in a

significant way. However, since injuries and fatalities increase with accidents, it is increased

exposure and/or a greater use of more a dangerous form of transportation that result from

higher BSS ridership.

7.5 Breaking Down Results by Type

In an attempt to investigate the channels through which accident, injury, and fa-

tality numbers change, I estimate the effect of BSS ridership on each of these outcomes for

motorists, pedestrians, and cyclists using a negative binomial model. I do not use an IV

specification, since average wind speed is a poor instrument for specific modes of transpi-

ration like walking or cycling: it no longer affects accidents, injuries, and fatalities of these

transportation modes solely through its impact on BSS ridership, and thus the exclusion

restriction is no longer satisfied.

The results for cyclists are shown in table (7). The estimated effects of BSS ridership

on cyclists in accidents, injured, or killed are maybe the most obvious. A 1,000 hour increase

in BSS ridership increases cyclist accidents by 3 percent, cyclist injuries by 4.5 percent, and

cyclist fatalities by 2.3 percent. However, it is important to note that the effect on fatalities
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is not statistically significant, likely due to very low counts of cyclist fatalities. An increase

in BSS ridership should strictly increase the number of cyclists, which would lead to higher

numbers of all three of these metrics, provided accident rates don’t decrease considerably.

Whether or not there is a change in the accident, injury, and fatality rate, however, is unclear

from these estimates, so it is not possible to make any conclusions about if there is a safety

in numbers effect or change in cyclist profile.

What is perhaps more interesting are the effects of BSS ridership on motorist ac-

cidents, which are displayed in column 1 of table (8). An increase in BSS ridership leads

to more motorist accidents, with a 1,000 hour increase in ridership leading to a 1.7 percent

increase in motorist accidents. Although the effect on injuries is not significant, there is a

significant effect on fatalities. However, the the estimated effect on fatalities is a 3 percent

increase for a 1,000 hour increase in BSS ridership, which is almost twice that of the effect on

accidents. This would suggest motorist accidents become more severe when there is a higher

level of BSS ridership, which seems unlikely. Instead, there is likely an omitted covariate

that is positively correlated with BSS ridership and motorist fatalities which is biasing the

result.

For pedestrians involved in accidents, the results are shown in table (9). A 1,000 hour

increase in BSS ridership decreases pedestrians in accidents by 0.4 percent. The impact on

injuries and fatalities is not statistically significant. This, however, may be due to there being

not enough data to draw conclusions, as a decrease in pedestrians in accidents should also

mean fewer getting injured or killed. There are a few possible mechanisms for the decrease

in pedestrian accidents. One is through BSS ridership’s impact on motorists — more cyclists

can increase drivers’ awareness and decrease the possibility of them getting in an accident.

However, the higher number of motorists involved in accidents discredits this slightly, unless

the majority of additional accidents caused by increased BSS ridership were with cyclists.

The more probable explanation is that fewer people are walking, and instead using a BSS as

their chosen form of transportation. This follows from some aforementioned surveys in that
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the majority of BSS trips are those that replace walking as opposed to driving.

8 Conclusion

In this study, I estimate the effect of increased usage of bike sharing systems on

traffic accidents. Utilizing a negative binomial instrumental variable model, I find that a

1,000 hour increase in BSS ridership increases traffic accidents by 2.1 percent, people in

accidents by 3 percent, injuries by 4.6 percent, and fatalities by 18.2 percent. With the

standard deviation of BSS ridership being 5,275 hours, a one standard deviation increase

in BSS ridership increases accidents by 11 percent, people in accidents by 15.8 percent,

injuries by 24.3 percent, and fatalities by 96 percent. These significant, positive estimates

are supported by a standard OLS and IV model as well as a regular NB model.

When examining how different transportation modes are affected, BSS ridership

increases the number of motorists and cyclists in accidents but decreases the number of

pedestrians in accidents. This suggests that BSS trips are mainly replacing walking. While it

is difficult to draw conclusions regarding additional effects like safety in numbers or increased

driver awareness, the fact that cyclist and motorist accidents did not decreases suggests that

the effect of increased exposure was far higher than either of these two effects.

Overall, I find the estimates for the NB IV models to be higher than their non-

instrumented counterparts. This negative bias suggests the omission of important covariates

that could include city level infrastructure change or additional deterrents of cycling that

also impact safety. These variables would have opposite correlations with accidents and BSS

ridership, which would lead to the negative bias. Addressing these concerns, however, is

difficult. Infrastructure data on the city by year level is not readily available and determining

every cycling deterrent that affects safety is a complicated task.

With a perfect instrument, this would not be grounds for concern. However, average

wind speed has its limits when it comes to its validity in this study. I show that it satisfies the
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two conditions necessary for instruments when regarding accidents as an outcome, although

it is far less perfect for some of the remaining dependent variables. To address this in future

research, I would need to adjust the standard NB model by adding the necessary covariates

or find a better instrument.
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9 Tables and Figures

Figure 1: BSS Ridership Mechanisms

Increase in BSS Ridership

More Trips

Higher Exposure (+)

Safety in Numbers (-)
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More Congestion (?)

Trip Mode Change
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Fewer Pedestrians (-)

More Cyclists (+)
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Figure 2: Traffic Accidents by City and Year
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Table 1: People Involved in Traffic Accidents (Daily Average from 2014 to 2022)

Austin Boston Chicago DC Los Angeles New York San Antonio San Francisco
People 27.80 25.83 744.96 145.50 121.09 509.09 84.08 16.19
-Motorists 27.72 24.57 731.02 139.52 109.67 472.37 83.78 12.68
-Cyclists 0.01 0.40 4.50 1.43 3.72 11.97 0.04 1.27
-Pedestrians 0.00 0.79 9.11 2.84 7.37 24.75 0.00 1.94
Injuries 6.57 4.45 230.53 20.01 93.55 163.83 14.95 12.39
-Motorists 6.54 4.42 220.75 16.78 82.57 127.96 14.85 8.93
-Cyclists 0.01 0.01 2.34 1.00 3.68 11.55 0.03 1.27
-Pedestrians 0.00 0.01 7.34 2.15 6.99 24.31 0.00 1.89
Fatalities 0.03 0.05 0.23 0.10 0.85 0.65 0.07 0.10
-Motorists 0.03 0.05 0.13 0.07 0.42 0.29 0.06 0.04
-Cyclists 0.00 0.00 0.01 0.00 0.05 0.05 0.00 0.01
-Pedestrians 0.00 0.00 0.08 0.03 0.38 0.31 0.00 0.05
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Table 2: Average Daily BSS Ridership

City 2014 2015 2016 2017 2018 2019 2020 2021 2022
Austin 180 192 232 248 341 128 154 262 282
Boston 777 771 843 913 1386 1940 1946 2430 2985
Chicago 1834 2362 2597 2710 2899 3199 3584 4784 4110
DC 2226 2514 2731 3162 2937 2619 2159 2457 3001
Los Angeles 0 0 84 227 398 277 255 334 393
New York 1624 6501 11083 11711 11103 13161 15930 19585 20301
San Antonio 173 154 160 172 165 149 226 202 179
San Francisco 0 0 0 367 1109 1452 1515 1451 1681
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Table 3: OLS Estimations

Dependent variable:

sinh−1(Accidents)

(1) (2) (3)

BSS Ridership in 0.014∗∗∗ 0.012∗∗∗

Thousands of Hours (0.001) (0.001)

Average Wind Speed −0.001 −0.00003 −0.002∗∗∗

(0.001) (0.001) (0.001)

Year, Month, Day, and Day of Week FE X X
Date FE X
City FE X X X
Weather Controls X X X
Demographic Controls X X X

Observations 23,586 23,586 23,586
R2 0.932 0.947 0.931
Adjusted R2 0.932 0.938 0.931
Residual Std. Error 0.324 (df = 23514) 0.309 (df = 20283) 0.326 (df = 23515)
F Statistic 4,561.000∗∗∗ (df = 71; 23514) 4,559.000∗∗∗ (df = 70; 23515)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 4: First Stage

Dependent variable:

BSS Ridership in

Thousands of Hours

(1)

Average Wind Speed −0.093∗∗∗

(0.005)

Year, Month, Day, and Day of Week FE FE X
City FE X
Weather Controls X
Demographic Controls X

Observations 23,586
R2 0.736
Adjusted R2 0.735
Residual Std. Error 2.660 (df = 23515)
F Statistic 937.100∗∗∗ (df = 70; 23515)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

32



Table 5: IV, NB, and NBIV Estimates

Dependent variable:

Accidents

IV NB NB IV

BSS Ridership in 0.021∗∗∗ 0.013∗∗∗ 0.021∗∗∗

Thousands of Hours (0.007) (0.001) (0.006)

Year, Month, Day, and Day of Week FE X X X
City FE X X X
Weather Controls X X X
Demographic Controls X X X

Observations 23,586 23,586 23,586
R2 0.932
Adjusted R2 0.932
Log Likelihood −94,209.000 −94,461.000
θ 19.810∗∗∗ (0.264) 19.040∗∗∗ (0.251)
Akaike Inf. Crit. 188,562.000 189,064.000
Residual Std. Error 0.324 (df = 23515)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 6: Impact of BSS Ridership on All People

Dependent variable:

Accidents People Injuries Fatalities

(1) (2) (3) (4)

BSS Ridership in 0.021∗∗∗ 0.030∗∗∗ 0.046∗∗∗ 0.182∗∗∗

Thousands of Hours (0.006) (0.008) (0.013) (0.060)

Year, Month, Day, and Day of Week FE X X X X
City FE X X X X
Weather Controls X X X X
Demographic Controls X X X X

Observations 23,586 23,586 23,586 23,586
Log Likelihood −94,461.000 −118,320.000 −96,302.000 −11,583.000
θ 19.040∗∗∗ (0.251) 7.531∗∗∗ (0.077) 3.211∗∗∗ (0.033) 2.658∗∗∗ (0.256)
Akaike Inf. Crit. 189,064.000 236,782.000 192,747.000 23,308.000

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 7: Impact of BSS Ridership on Cyclists

Dependent variable:

Cyclists Injuries Fatalities

(1) (2) (3)

BSS Ridership in 0.030∗∗∗ 0.045∗∗∗ 0.023
Thousands of Hours (0.002) (0.002) (0.014)

Year, Month, Day, and Day of Week FE X X X
City FE X X X
Weather Controls X X X
Demographic Controls X X X

Observations 23,586 23,586 23,586
Log Likelihood −33,018.000 −27,205.000 −1,287.000
θ 5.152∗∗∗ (0.160) 6.556∗∗∗ (0.248) 2.576 (2.700)
Akaike Inf. Crit. 66,181.000 54,554.000 2,718.000

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 8: Impact of BSS Ridership on Motorists

Dependent variable:

Motorists Injuries Fatalities

(1) (2) (3)

BSS Ridership in 0.017∗∗∗ −0.002 0.030∗∗∗

Thousands of Hours (0.001) (0.001) (0.006)

Year, Month, Day, and Day of Week FE X X X
City FE X X X
Weather Controls X X X
Demographic Controls X X X

Observations 23,586 23,586 23,586
Log Likelihood −117,217.000 −94,610.000 −8,305.000
θ 7.455∗∗∗ (0.077) 2.903∗∗∗ (0.030) 0.947∗∗∗ (0.082)
Akaike Inf. Crit. 234,578.000 189,364.000 16,753.000

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 9: Impact of BSS Ridership on Pedestrians

Dependent variable:

Pedestrians Injuries Fatalities

(1) (2) (3)

BSS Ridership in −0.004∗∗∗ 0.001 0.008
Thousands of Hours (0.001) (0.001) (0.006)

Year, Month, Day, and Day of Week FE X X X
City FE X X X
Weather Controls X X X
Demographic Controls X X X

Observations 23,586 23,586 23,586
Log Likelihood −41,068.000 −35,213.000 −5,560.000
θ 5.383∗∗∗ (0.120) 7.060∗∗∗ (0.182) 6.805∗∗ (2.722)
Akaike Inf. Crit. 82,279.000 70,571.000 11,263.000

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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